To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Limonite is mainly derived from weathering of Fe sulfide, iron-bearing carbonate, or silicate minerals. The weathering of Fe sulfide or carbonate minerals to yield limonite from the Tongling mineralization cluster has been studied extensively. Knowledge of the mineralogical and geochemical characteristics of the limonite from weathering of Fe-bearing silicate minerals is still incomplete, however. To address this, black limonite containing ilvaite (a silicate mineral) found in Yeshan iron deposit, Tongling, China, was studied using mineralogical and chemical analysis. The mineralogical characteristics indicated that Mn goethite was present as nano-granular (<15 nm) or acicular (50–100 nm long, ~10 nm wide, i.e. high length/width ratio) crystals with low crystallinity. Groutite, ramsdellite, and pyrolusite were identified in the limonite as ~5 nm nanoparticles, and coated on the goethite surface. Amorphous Fe-Mn phases and silica were highly developed in the limonite studied. Ilvaite crystals showed idiomorphic granular morphology and were replaced by Fe-Mn oxides/hydroxides; pyrite was also present as inclusions within the ilvaite and the ilvaite structural formula calculated was Ca1.04(Fe1.57Mn0.31Mg0.04)(Fe1.09Al0.01)[Si1.95O]O(OH). According to the relatively high CuO and ZnO values and the low Al2O3 value in the black limonite, the negative correlations between (Fe2O3+MnO) and (CuO+ZnO+BaO), (Fe2O3+MnO) and Al2O3, high Mn and Si contents, and the characteristics of the textural relationships and compositions between the black limonite and ilvaite, a semi-enclosed environment with acidic to weakly alkaline conditions was deduced; ilvaite was found to be responsible for the formation and enrichment of limonite.
Clays and their composites have been widely used for secondary containment walls for underground storage tanks and landfills. The pore-size changes occurring in the clay have a profound effect on its permeability. This study presents a new method for evaluating the use of an atomic force microscope (AFM) for studying wet clay in a non-aqueous state in order to determine the pore-size of clay at various water contents, a type of study typically performed by the more expensive environmental scanning electronic microscope. The method consists of mounting a sponge saturated with water under the sample in order to prevent drying by the heat generated by the AFM electronics. The micro-scale AFM image results show that the clay-particle separations reduce linearly as the water content increases. This change in pore-size is postulated to be attributed to the reduction in the size of the diffuse double layer and more extensive hydrogen bonds between clay particles and bipolar water molecules. The AFM was not able to produce nano-scale images due to excessive adhesion between the cantilever arm and the wet clay sample.
Bentonite and iron metals are common materials proposed for use in deep-seated geological repositories for radioactive waste. The inevitable corrosion of iron leads to interaction processes with the clay which may affect the sealing properties of the bentonite backfill. The objective of the present study was to improve our understanding of this process by studying the interface between iron and compacted bentonite in a geological repository-type setting. Samples of MX-80 bentonite samples which had been exposed to an iron source and elevated temperatures (up to 115°C) for 2.5 y in an in situ experiment (termed ABM1) at the Äspö Hard Rock Laboratory, Sweden, were investigated by microscopic means, including scanning electron microscopy, μ-Raman spectroscopy, spatially resolved X-ray diffraction, and X-ray fluorescence.
The corrosion process led to the formation of a ~100 μm thick corrosion layer containing siderite, magnetite, some goethite, and lepidocrocite mixed with the montmorillonitic clay. Most of the corroded Fe occurred within a 10 mm-thick clay layer adjacent to the corrosion layer. An average corrosion depth of the steel of 22–35 μm and an average Fe2+ diffusivity of 1–2 × 10−13 m2/s were estimated based on the properties of the Fe-enriched clay layer. In that layer, the corrosion-derived Fe occurred predominantly in the clay matrix. The nature of this Fe could not be identified. No indications of clay transformation or newly formed clay phases were found. A slight enrichment of Mg close to the Fe—clay contact was observed. The formation of anhydrite and gypsum, and the dissolution of some SiO2 resulting from the temperature gradient in the in situ test, were also identified.
Isomorphous substitutions of Mg and Fe for Al generally appear in the octahedral sheets of montmorillonite, whereas they are infrequent in kaolinite. Therefore, the release of Mg and Fe from the octahedral sheets probably happens during the transformation of montmorillonite into kaolinite, which could affect the migration of Mg and Fe from clay minerals into surrounding environments. The objective of the current study was to investigate the relationship between Mg and Fe release during the transformation of montmorillonite into kaolinite. The results showed that the d060 value of clay minerals decreased slightly, and the intensities of both the AlMg–OH and AlFe–OH bending vibrations also decreased gradually. In addition, the (Mg+Fe)/Al (major octahedral ions) atomic ratio of kaolinite was lower than that of montmorillonite, especially in identical hydrothermal products. These results indicated that Mg and Fe ions were released progressively from the octahedral sheets during the transformation of montmorillonite into kaolinite. Moreover, the changed relative concentrations of Mg and Fe ions in the supernatant solutions after hydrothermal reactions suggested a random distribution of Mg and/or Fe in the octahedral sheets of the montmorillonite. These results improve understanding of the release relationship between Mg and Fe during clay mineral evolution and of the distribution of these two ions in the octahedral sheets, as well as the chemical composition of clay minerals as an indicator of geological environments.
Clays have played an important role in medicine since the dawn of mankind and are still applied widely as active ingredients and/or excipients in pharmaceutical formulations. Due to their outstanding properties of large retention capacity, swelling and rheological properties, and relative low cost, they have been used widely as advanced carriers for the efficient delivery of drugs by modifying their release (rate and/or time), increasing the stability of the drug, improving the dissolution profile of a drug, or enhancing their intestinal permeability. In addition, recent studies have shed new light on the potential of clay minerals in the nanomedicine field due to their biocompatibility, beneficial effects of clay nanoparticles on cellular adhesion, proliferation, and differentiation. Use as active ingredients and excipients are exerted via the oral and topical administration pathways. Skin drug delivery represents an attractive alternative to the oral route, providing local and/or systemic drug delivery. Due to their complex structures, however, most drugs penetrate the human skin only with difficulty. Enormous efforts have been invested, therefore, in developing advanced drug delivery systems able to overcome the skin barrier. Most strategies require the use of singular materials with new properties. In particular, and on the basis of their inherent properties, clay minerals are ideal candidates for the development of intelligent skin drug delivery systems. In this article, the properties of clay materials and their use in the skin-addressed pharmaceutical field are reviewed. A brief introduction of skin physiology and biopharmaceutical features of penetration by a drug through the skin layers is also included and is designed to shed light on the optimum properties of ideal nanosystems for advanced skin drug delivery. Special attention is devoted to the pharmacological functions of clays and their biomedical applications in pelotherapy, wound healing, regenerative medicine, antimicrobial, and dermocosmetics.
Clay, or more precisely, certain clay typologies, have been used traditionally by humans for therapeutic, nutritional, and skin-care purposes though they may be responsible for some relatively rare but significant health and skin-care risks. For example, clay particles could adsorb and make available for elimination or excretion any potential toxic elements or toxins being ingested or produced, but they could also adsorb and make available for incorporation, through ingestion or through dermal absorption, toxic elements, e.g. heavy metals. Geophagy has been observed in all parts of the world since Antiquity, reflecting cultural practices, religious beliefs, and physiological needs, be they nutritional (dietary supplementation) or as a remedy for disease. Some clays and clay minerals are employed widely in both the pharmaceutical and cosmetics industries as active compounds/agents and as excipients. In the biomedical field, some clay minerals such as halloysite and montmorillonite are known for their effective role as carriers for the control and sustainable delivery of active drug molecules, and in the biomaterials field some clay minerals are used for scaffold, hydrogel, foam, and film production. Constraints, both chemical and microbiological, on the use of clay-based products for therapeutic and cosmetic topical applications are generally imposed by sanitary regulations, and some solutions are proposed herein to control and reduce such restrictions. Particular emphasis is placed here on peloids and pelotherapy, as well as on manipulated and modified peloids, and specifically on tailored peloids or ‘designed and engineered’ peloids, and their derivatives, bactericidal peloids and ointments. As far as the so-called ‘killer clays’ are concerned, their pre-requisites, mechanisms of action, and disinfection role are also enhanced. Podoconiosis is an environment-related or geochemical disease that occurs in tropical highland areas, and is caused by long-term exposure of bare feet to volcanic, red-clay soil and affects some people, particularly those working in agriculture in some regions of Africa, Asia, and South America.
Submicroscopic intergrowths of K biotite, Na biotite and intermediate Na-K biotite from a schist near Málaga (Betic Cordilleras, Spain) were discovered using high-resolution transmission electron microscopy and analytical electron microscopy. The sample was also studied with X-ray diffraction, electron microprobe analysis, and scanning electron microscopy. Scanning electron microscopy revealed that the Na-enriched biotite is concentrated in albite-rich microdomains, albite being partially replaced by biotite. These images also revealed that both K and Na-K biotite grains appear locally retrograded to kaolinite. Transmission electron microscopic data indicated that K biotite, Na biotite and Na-K biotite form parallel or subparallel packets with interfaces parallel to the basal planes of biotite. Potassium biotite forms thick packets, chemically homogeneous, with a basal spacing of 10.1 Å. Sodium biotite also occurs as chemically homogeneous stacks of layers with a 9.78 Å periodicity. Sodium-K biotite shows, on the contrary, variable composition and basal spacings intermediate between K and Na biotites. Analytical electron microscopic data revealed important chemical differences between Na and K biotites, which affect both the tetrahedral and the octahedral sheets. Both electron microprobe analysis and analytical electron microscopy indicated that the trioctahedral micas show relatively low interlayer occupancy, suggesting the presence of H3O+ replacing the interlayer cations. Partial hydration of biotite explains the presence of a weak 14 Å reflection in the X-ray patterns. Both chemical and textural data suggested that these trioctahedral micas grew during a common prograde metamorphic episode, the phases with intermediate composition probably being metastable.
Graphite phase carbon nitride (g-C3N4) is a non-metal semiconductor material with a suitable band gap (2.7 eV) for visible photocatalysis. However, the high cost of relevant synthesis methods and poor adsorption performance have limited its practical applications. The objective of the present study was to mitigate these problems by synthesizing the g-C3N4 in the presence of exfoliated montmorillonite (Mnt). Compared with bulk montmorillonite, the specific surface area of exfoliated two-dimensional Mnt layers was significantly increased. As a result, the light transmittance of the lamella improved noticeably due to the fact that a freshly exposed surface had a large number of active reaction sites, making Mnt an excellent carrier for the photocatalyst g-C3N4. In order to improve the photocatalytic performance of g-C3N4, a series of g-C3N4/Mnt composites was prepared by a wet chemical method using Mnt nanolayers as the matrix. X-ray diffraction, infrared spectroscopy, Brunauer-Emmett-Teller nitrogen adsorption/desorption, transmission electron microscopy, and ultraviolet-visible diffuse reflectance spectroscopy were used to analyze the phase structure, the chemical bonds, the specific surface area and pore sizes, the morphology, and the light absorption characteristics of the composites, respectively. Rhodamine B (RhB) served as the target dye to test the photocatalytic degradation performance of the composites under visible light. According to the findings, the surface of the Mnt nanolayers was densely and uniformly covered by g-C3N4, forming a multi-layered stack structure. An increase of the calcination temperature improved the crystallinity of g-C3N4, leading first to densification and then to relaxation of the layered composite structure. Conversely, the band gap of the composite gradually decreased from 2.56 to 2.4 eV. Furthermore, temperature exposure changed the photocatalytic performance of the composite drastically. While the largest photocatalytic activity was observed at 610°C, it started to decrease with further heating of the composite. The complete degradation of RhB solution occurred after 2 h of visible light irradiation. The findings of the current study provide a scientific basis for the synthesis of a new generation of photocatalysts.
In order to develop high-performance adsorbents to remove toxic methylene blue (MB) from wastewater, palygorskite (Plg) was utilized as a template to prepare palygorskite/carbon (Plg/C) composites by using a hydrothermal reaction in the presence of glucose. The porous Plg/C composites were then activated with ZnCl2. The effects of the dose of the activator and the activation temperature on the crystal structure, micro-morphology, specific surface area, and adsorption performance of the porous Plg/C composites were studied systematically here. X-ray diffraction (XRD) and scanning electron microscopy (SEM) results indicated that the crystal structure of Plg was destroyed during the activation process and irregular porous carbon was closely attached to the residual aluminosilicate skeleton. The activation was optimized at 400°C with a ZnCl2:Plg/C impregnation ratio of 2:1. The sample had a specific surface area of 1497.88 m2/g, together with a total pore volume and micropore volume of 1.0355 and 0.5464 cm3/g, respectively. The MB adsorption capacity was 381.04 mg/g. Such inexpensive, high-performance, porous Plg/C composites could find potential applications in wastewater treatment.
The potential use of near-infrared (NIR) spectroscopy as a characterization tool for organo-clays would be a great asset but little work has been done in this regard because the application of NIR to clay mineral studies is a relatively new phenomenon. The purpose of this study was to use NIR spectroscopy to investigate the effect of alkylammonium cations on the acid dissolution of a high-charge montmorillonite (SAz-1). Detailed analysis of the spectra of Li+-, TMA+- (tetramethylammonium), and HDTMA+- (hexadecyltrimethylammonium) saturated SAz-1 montmorillonite in the NIR region was achieved by comparing the first overtone (2ν) and combination (ν+δ) bands of XH groups (X = O, C) with the fundamental stretching (ν) and bending (δ) vibrations observed in the mid-infrared (MIR) region. Comprehensive analysis of the vibrational modes of CH3-N, CH3-C, and -CH2-C groups of TMA+ and HDTMA+ cations detected in the MIR and NIR regions was also performed. Both MIR and NIR spectra demonstrated that exchange of Li+ by TMA+ only slightly improved the resistance of SAz-1 layers to dissolution in 6 M HCl at 80°C, while exchange by the larger HDTMA+ cations almost completely protected the montmorillonite layers from acid attack. Use of NIR spectra in reaching these conclusions was crucial. Only in the NIR region could the creation of SiOH groups be monitored, which is an important indicator of the acidification of the montmorillonite surface. The OH-overtone region in the spectra of Li-SAz-1 and TMA-SAz-1 revealed that the SiOH band near 7315 cm−1 increases in intensity with enhanced acid treatment. In contrast, no SiOH groups were identified in the NIR spectra of HDTMA-SAz-1 treated in HCl, indicating that HDTMA+ completely covers the inner and outer surfaces of the montmorillonite and hinders access ofprotons to the Si-O− bonds created upon acid treatment.
Among all iron oxides, hematite (α-Fe2O3), goethite (α-FeOOH), and ferrihydrite (FeOOH⋅nH2O) are the most common mineral species. While immobilization of Mo6+ by surface adsorption on ferric oxides has been studied extensively, the mechanisms of incorporation in their structure have been researched little. The objective of this study was to investigate the relation between Mo content and its structural incorporation in hematite, goethite, and six-line ferrihydrite by a combination of X-ray absorption spectroscopy (XAS), powder X-ray diffraction (pXRD), and inductively-coupled plasma optical emission spectrometry (ICP-OES). Synthesized in the presence of Mo, the hematite, goethite, and six-line ferrihydrite phases incorporated up to 8.52, 0.03, and 17.49 wt. % Mo, respectively. For hematite and goethite, pXRD analyses did not indicate the presence of separate Mo phases. Refined unit-cell parameters correlated with increasing Mo concentration in hematite and goethite. The unit-cell parameters indicated an increase in structural disorder within both phases and, therefore, supported the structural incorporation of Mo in hematite and goethite. Analysis of pXRD measurements of Mo-bearing six-line ferrihydrites revealed small amounts of coprecipitated akaganéite. X-ray absorption near edge structure (XANES) measurements at the Mo L3-edge indicated a strong distortion of the MoO6 octahedra in all three phases. Fitting of extended X-ray absorption fine structure (EXAFS) spectra of the Mo K-edge supported the presence of such distorted octahedra in a coordination environment similar to the Fe position in the investigated specimen. Incorporation of Mo6+ at the Fe3+-position for both hematite and goethite resulted in the formation of one Fe vacancy in close proximity to the newly incorporated Mo6+ and, therefore, charge balance within the hematite and goethite structures.
The effects of ultrasound treatment on the mean particle size, crystal structure, crystallite dimensions and specific surface area of natural muscovite and biotite samples have been investigated. Sonication of macroscopic flakes of muscovite and biotite produced a drastic particle-size reduction. The conditions for the preparation of micron and submicron-sized muscovite and biotite particles of narrow particle-size distribution by sonochemistry are described. The effect of sonication on particle-size reduction is more significant for muscovite than for biotite. Thus, for long sonication times (100 h), submicron and micron particles are predominant in muscovite and biotite, respectively. The resulting materials are crystalline, as assayed by X-ray diffraction, only broadening of the diffraction lines due to size-reduction was observed. Nuclear magnetic resonance studies revealed that the coordination of Al and Si was not modified by the treatment. Chemical analysis showed that the composition of the sample was not affected by the sonication except for a small contamination by Ti from the tip cup of the sonication instrument.
X-ray diffraction has been used to study the sorption of water by multilayer films containing ordered stacks of alternating layers of an organic polyelectrolyte and individual platelets of a smectite. The position and shape of the 001 reflections due to the ordered polyelectrolyte/platelet stacks were essentially the same when in air at low relative humidity (23–25% RH) and under water. These data indicate that swelling occurs exclusively in X-ray amorphous regions within the film, and that the ordered polyelectrolyte/clay domains themselves are not ‘swellable’ by water.