To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper uses the writings of European teachers and Chinese students at St. Stephen’s Girls’ College in Hong Kong—published in English periodicals of its school magazine and local English newspapers—to examine how the school tactically positioned itself as an educational site for the “useful women of China” during a period in Republican China that was simultaneously defined as a time of “cosmopolitan modernity” and “national rebuilding.” St. Stephen’s brand of usefulness responded to the “New Woman” phenomenon in Republican China, and it was defined through the narrative of science learning and a sense of service. Through its progressive science curriculum and social service branch, the school helped prepare a class of “career women” for China. It was in educating this class that St. Stephen’s, in resonance with the colonial state, envisioned its role in the shaping of modern China.
The understanding of the entrainment mechanism of synthetic jets can help optimise the synthetic jet actuators in engineering applications. It is generally believed that vortex rings or strong velocity fluctuations in the near field of the synthetic jet are responsible for its enhanced entrainment. However, in recent years, it has been found that the enhanced entrainment of the synthetic jet may be caused by the instability or the vortex ring breakdown in the transition region. To shed new light on this issue, synthetic jets with different Reynolds numbers and dimensionless stroke lengths are investigated with time-resolved two-dimensional particle image velocimetry. Based on the analyses of velocity triple-decomposition, Fourier mode decomposition and phase-averaged $\lambda _{ci}D/U_0$ field, the streamwise positions of the vortex ring breakdown are determined for the synthetic jets, and the entrainment coefficient can be divided into three components, i.e. the coherent turbulent kinetic energy production, the random turbulent kinetic energy production and the shape of the velocity profile. It is found that the entrainment coefficient is dominated by the component related to the random turbulent kinetic energy production, and reaches its peak value at the position of vortex ring breakdown. The results obtained in different cases show a strong correlation between vortex ring breakdown and entrainment enhancement. From the perspective of instantaneous snapshot, the mechanism of vortex ring breakdown enhanced entrainment is revealed, that is, vortex ring breakdown enhanced the small-scale vortex near the turbulent/non-turbulent interface, resulting in an increase of enstrophy production, and thus enhanced local entrainment.
It is unclear how much adolescents’ lives were disrupted throughout the COVID-19 pandemic or what risk factors predicted such disruption. To answer these questions, 1,080 adolescents in 9 nations were surveyed 5 times from March 2020 to July 2022. Rates of adolescent COVID-19 life disruption were stable and high. Adolescents who, compared to their peers, lived in nations with higher national COVID-19 death rates, lived in nations with less stringent COVID-19 mitigation strategies, had less confidence in their government’s response to COVID-19, complied at higher rates with COVID-19 control measures, experienced the death of someone they knew due to COVID-19, or experienced more internalizing, externalizing, and smoking problems reported more life disruption due to COVID-19 during part or all of the pandemic. Additionally, when, compared to their typical levels of functioning, adolescents experienced spikes in national death rates, experienced less stringent COVID-19 mitigation measures, experienced less confidence in government response to the COVID-19 pandemic, complied at higher rates with COVID-19 control measures, experienced more internalizing problems, or smoked more at various periods during the pandemic, they also experienced more COVID-19 life disruption. Collectively, these findings provide new insights that policymakers can use to prevent the disruption of adolescents’ lives in future pandemics.
We consider inertial waves propagating in a fluid contained in a non-axisymmetric three-dimensional rotating cavity. We focus on the particular case of a fluid enclosed inside a truncated cone or frustum, which is the volume that lies between two horizontal parallel planes cutting an upright cone. While this geometry has been studied in the past, we generalise it by breaking its axisymmetry and consider the case of a truncated elliptic cone for which the horizontal sections are elliptic instead of circular. The problem is first tackled using ray tracing, where local wave packets are geometrically propagated and reflected within the closed volume without attenuation. We complement these results with a local asymptotic analysis and numerical simulations of the original linear viscous problem. We show that the attractors, well known in two dimensional or axisymmetric domains, can be trapped in a particular plane in three dimensions provided that the axisymmetry of the domain is broken. Contrary to previous examples of attractors in three-dimensional domains, all rays converge towards the same limit cycle regardless of initial conditions, and it is localised in the bulk of the fluid.
Let $\mathbb {F}_q^d$ denote the d-dimensional vector space over the finite field $\mathbb {F}_q$ with q elements. Define for $\alpha = (\alpha _1, \dots , \alpha _d) \in \mathbb {F}_q^d$. Let $k\in \mathbb {N}$, A be a nonempty subset of $\{(i, j): 1 \leq i < j \leq k + 1\}$ and $r\in (\mathbb {F}_q)^2\setminus {0}$, where $(\mathbb {F}_q)^2=\{a^2:a\in \mathbb {F}_q\}$. If $E\subset \mathbb {F}_q^d$, our main result demonstrates that when the size of the set E satisfies $|E| \geq C_k q^{d/2}$, where $C_k$ is a constant depending solely on k, it is possible to find two $(k+1)$-tuples in E such that one of them is dilated by r with respect to the other, but only along $|A|$ edges. To be more precise, we establish the existence of $(x_1, \dots , x_{k+1}) \in E^{k+1}$ and $(y_1, \dots , y_{k+1}) \in E^{k+1}$ such that, for $(i, j) \in A$, we have $\lVert y_i - y_j \rVert = r \lVert x_i - x_j \rVert $, with the conditions that $x_i \neq x_j$ and $y_i \neq y_j$ for $1 \leq i < j \leq k + 1$, provided that $|E| \geq C_k q^{d/2}$ and $r\in (\mathbb {F}_q)^2\setminus \{0\}$. We provide two distinct proofs of this result. The first uses the technique of group actions, a powerful method for addressing such problems, while the second is based on elementary combinatorial reasoning. Additionally, we establish that in dimension 2, the threshold $d/2$ is sharp when $q \equiv 3 \pmod 4$. As a corollary of the main result, by varying the underlying set A, we determine thresholds for the existence of dilated k-cycles, k-paths and k-stars (where $k \geq 3$) with a dilation ratio of $r\in (\mathbb {F}_q)^2\setminus \{0\}$. These results improve and generalise the findings of Xie and Ge [‘Some results on similar configurations in subsets of $\mathbb {F}_q^d$’, Finite Fields Appl.91 (2023), Article no. 102252, 20 pages].
Direct numerical simulations are conducted for temporally evolving stratified wake flows at Reynolds numbers from $10\,000$ to $50\,000$ and Froude numbers from $2$ to 50. Unlike previous studies that obtained statistics from a single realization, we take ensemble averages among 80–100 realizations. Our analysis shows that data from one realization incur large convergence errors. These errors reduce quickly as the number of statistical samples increases, with the benefit of ensemble average diminishing beyond 40–60 realizations. The data with ensemble average allow us to test the previously established scalings and arrive at new scaling estimates. Specifically, the data do not support power-law scaling in the centreline velocity deficit $U_0$ beyond the near wake. Its decay rate increases continuously from 0.1 at the onset of the non-equilibrium regime until the end of our calculations without reaching any asymptote. Additionally, while no power-law scalings could be found in the wake width ($L_H$) and wake height ($L_V$) in the late wake, $L_H\sim (Nt)^{1/3}$ is a good working approximation of the wake's horizontal size, where $N$ is buoyancy frequency and $t$ is time. Besides the low-order statistics, we also report the transverse integrated terms and the vertically integrated terms in the turbulent kinetic energy budget equation as a function of the vertical and transverse coordinates. The data indicate that there are two peaks in the vertically integrated production and transport terms, and one peak when the two terms are integrated horizontally.
We prove Abelian and Tauberian theorems for regularized Cauchy transforms of positive Borel measures on the real line whose distribution functions grow at most polynomially at infinity. In particular, we relate the asymptotics of the distribution functions to the asymptotics of the regularized Cauchy transform.
Experimental and theoretical studies on millimetre-sized droplets suggest that at low Reynolds number the difference between the drag force on a circulating water droplet and that on a rigid sphere is very small (less than 1 %) (LeClair et al., J. Atmos. Sci., vol. 29, 1972, pp. 728–740). While the drag force on a spherical liquid droplet at high viscosity ratios (of the liquid to the gas), is approximately the same as that on a rigid sphere of the same size, the other quantities of interest (e.g. the temperature) in the case of a rarefied gas flow over a liquid droplet differ from the same quantities in the case of a rarefied gas flow over a rigid sphere. The goal of this article is to study the effects of internal motion within a spherical microdroplet/nanodroplet – such that its diameter is comparable to the mean free path of the surrounding gas – on the drag force and its overall dynamics. To this end, the problem of a slow rarefied gas flowing over an incompressible liquid droplet is investigated analytically by considering the internal motion of the liquid inside the droplet and also by accounting for kinetic effects in the gas. Detailed results for different values of the Knudsen number, the ratio of the thermal conductivities and the ratio of viscosities are presented for the pressure and temperature profiles inside and outside the liquid droplet. The results for the drag force obtained in the present work are in good agreement with the theoretical and experimental results existing in the literature.
The loading and unloading operations of smart logistic application robots depend largely on their perception system. However, there is a paucity of study on the evaluation of Lidar maps and their SLAM algorithms in complex environment navigation system. In the proposed work, the Lidar information is finetuned using binary occupancy grid approach and implemented Improved Self-Adaptive Learning Particle Swarm Optimization (ISALPSO) algorithm for path prediction. The approach makes use of 2D Lidar mapping to determine the most efficient route for a mobile robot in logistical applications. The Hector SLAM method is used in the Robot Operating System (ROS) platform to implement mobile robot real-time location and map building, which is subsequently transformed into a binary occupancy grid. To show the path navigation findings of the proposed methodologies, a navigational model has been created in the MATLAB 2D virtual environment using 2D Lidar mapping point data. The ISALPSO algorithm adapts its parameters inertia weight, acceleration coefficients, learning coefficients, mutation factor, and swarm size, based on the performance of the generated path. In comparison to the other five PSO variants, the ISALPSO algorithm has a considerably shorter path, a quick convergence rate, and requires less time to compute the distance between the locations of transporting and unloading environments, based on the simulation results that was generated and its validation using a 2D Lidar environment. The efficiency and effectiveness of path planning for mobile robots in logistic applications are validated using Quanser hardware interfaced with 2D Lidar and operated in environment 3 using proposed algorithm for production of optimal path.
A two-port ceramic-based antenna loaded with partially reflecting surface (PRS) is structured and explored. Fan-shaped slot is utilized to create circularly polarized wave in both frequency ranges. Dual frequency ranges are due to hybrid mode creation inside the ceramic material, i.e. HEM11δ and HEM12δ modes. PRS is used to change the phase gradient, which in turn tilts the radiation beam (±35°) obtained from different port in opposite direction. This concept is useful to reduce the envelop correlation coefficient using far-field. Experimental verification confirms that the designed antenna works from 26.1 to 27.5 GHz and 31.7 to 33.6 GHz along with less than 3-dB axial ratio from 26.5 to 27.1 GHz and 31.9 to 33.1 GHz respectively. Orthogonal placement of ports introduces the concept of polarization diversity and decreases the coupling between ports by an amount of −25 dB. Good gain value (up to 7.0 dBi) and better value of diversity performance make the designed radiator applicable for 5 G millimeter-wave uses.
This paper presents the application of a substrate-integrated waveguide (SIW) for the design of a leaky-wave antenna (LWA). The antenna radiates through a wide slot in the top wall of the SIW structure in the forward direction. The effective width of the slot is varied by changing capacitances of two arrays of varactors connected between slot edges and inserted conducting strips. The radiation pattern of the antenna is by this way controlled by DC bias, which sets the capacitances of varactors. The maximum radiation direction in elevation can be varied within 35° by changing the DC bias from 2 to 12 V. This elevation angle is measured from the broad side direction perpendicular to the antenna substrate. The measured antenna characteristics are in accord with those predicted by simulation. The antenna can be simply fabricated by a planar circuit board technology.
This report presents new documentation of the external canal in the Late Postclassic site of Tetzcotzinco in the municipality of Texcoco, Mexico. This structure was previously considered a waterwork separate from the monumental water-management system discovered in the central part of the site. However, reanalysis of the course of this canal allowed us to reassess its function and revise the existing Tetzcotzinco maps. We propose that this structure formed part of the main water-management system of the site.
Significant links exist between one’s perception of available social support and mental health outcomes, including during the transition to motherhood. Yet, attachment theory posits that individuals do not benefit equally from social support. As such, we examined the influence of attachment representations (i.e., secure base script knowledge) as they potentially moderate links between social support and psychological distress in a 1-year longitudinal study of an ethnically diverse (56% White) sample of infant-mother dyads. We hypothesized that higher social support would predict lower maternal psychological distress and this relation would be strongest in those with higher secure base script knowledge. Results indicated that maternal perceptions of social support were significantly negatively correlated with psychological distress. Analyses revealed that secure base script scores significantly moderated these associations. Interestingly, for those high in script knowledge, low social support predicted greater psychological distress. For those low in script knowledge, social support was unrelated to psychological distress. This pattern suggested that those who expect care (i.e., high secure base script knowledge) but receive minimal support (i.e., low perceived social support) find motherhood uniquely dysregulating. Practitioners may do well to examine individuals’ attachment expectations in relation to their current social support.
Recent microfluidic experiments have evidenced complex spatio-temporal fluctuations in low-Reynolds-number flows of polymer solutions through lattices of obstacles. However, understanding the nonlinear physics of such systems remains a challenge. Here, we use high performance simulations to study viscoelastic flows through a hexagonal lattice of cylindrical obstacles. We find that structures of localized polymer stress – in particular birefringent strands – control the stability and the dynamics. We first show that, at steady state, strands act as a web of sticky flow barriers that induce channelization, multistability and hysteresis. We then demonstrate that a spontaneous destabilization of the strands drives the transition to unsteady flow with regimes of self-sustained oscillations, travelling waves and strand pulsations. We further show that these pulsations, which result from the destabilization of envelope patterns of stress with strands wrapped around multiple obstacles, are integral to the transition towards elastic turbulence in our two-dimensional simulations. Our study provides a new perspective on the role of birefringent strands and a framework for understanding experimental observations. We anticipate that it is an important step towards unifying existing interpretations of the nonlinear physics of viscoelastic flows through complex structures.
Public education, at least as it has been known for the past several generations in the US, is under threat. Conservative state legislatures from Arizona to Florida have enacted sweeping voucher legislation, channeling taxpayer dollars to private schools. At the same time, a vicious culture war has engulfed the public education system in controversy, creating new political opportunities for ideologues and opponents. In this context, the editorial team at HEQ felt it important to reflect on why we have public schools in the first place. What are they good for and what should be taught? Whom should they serve, and who should govern them?
For this policy dialogue, we asked Carol Burris and Johann Neem to discuss the past, present, and future of open-enrollment, taxpayer-supported public schools. Carol Burris is the executive director of the Network for Public Education Foundation and the author of several books. Prior to that role, Dr. Burris was a classroom teacher and a high school principal, earning educator of the year and principal of the year awards. Johann Neem is a professor at Western Washington University and a historian of the early American republic. The author of several books, including Democracy’s Schools: The Rise of Public Education in America, Dr. Neem is also a member of HEQ’s editorial board.
HEQ policy dialogues are, by design, intended to promote an informal, free exchange of ideas between scholars. At the end of the exchange, we offer a list of references for readers who wish to follow up on sources relevant to the discussion.