We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The quasi-geostrophic two-layer model is a widely used tool to study baroclinic instability in the ocean. One instability criterion for the inviscid two-layer model is that the potential vorticity (PV) gradient must change sign between the layers. This has a well-known implication if the model includes a linear bottom slope: for sufficiently steep retrograde slopes, instability is suppressed for a flow parallel to the isobaths. This changes in the presence of bottom friction as well as when the PV gradients in the layers are not aligned. We derive the generalised instability condition for the two-layer model with non-zero friction and arbitrary mean flow orientation. This condition involves neither the friction coefficient nor the bottom slope; even infinitesimally weak bottom friction destabilises the system regardless of the bottom slope. We then examine the instability characteristics as a function of varying slope orientation and magnitude. The system is stable across all wavenumbers only if friction is absent and if the planetary, topographic and stretching PV gradients are aligned. Strong bottom friction decreases the growth rates but also alters the dependence on bottom slope. In conclusion, the often mentioned stabilisation by steep bottom slopes in the two-layer model holds only in very specific circumstances, thus probably plays only a limited role in the ocean.
Validated computerized assessments for cognitive functioning are crucial for older individuals and those at risk of cognitive decline. The National Institutes of Health (NIH) Toolbox Cognition Battery (NIHTB-CB) exhibits good construct validity but requires validation in diverse populations and for adults aged 85+. This study uses data from the Assessing Reliable Measurement in Alzheimer’s Disease and cognitive Aging study to explore differences in the factor structure of the NIHTB-CB for adults 85 and older, Black participants versus White participants, and those diagnosed as amnestic Mild Cognitive Impairment (aMCI) vs cognitively normal (CN).
Method:
Subtests from the NACC UDS-3 and NIHTB-CB were administered to 503 community-dwelling Black and White adults ages 55–99 (367 CN; 136 aMCI). Confirmatory factor analyses were used to investigate the original factor structure of NIHTB-CB that forms the basis for NIHTB-CD Index factor scores.
Results:
Factor analyses for all participants and some participant subsets (aMCI, White, 85+) substantiated the two anticipated factors (Fluid and Crystallized). However, while Black aMCI participants had the expected two-factor structure, for Black CN participants, the List Sorting Working Memory and Picture Sequence tests loaded on the Crystallized factor.
Conclusions:
Findings provide psychometric support for the NIHTB-CB. Differences in factor structure between Black CN individuals and Black aMCI individuals suggest potential instability across levels of cognitive impairment. Future research should explore changes in NIHTB-CB across diagnoses in different populations.
Chickpea is a cool season, photothermal-sensitive crop, that is adversely affected by high temperatures (>35°C) and whose flowering is promoted by long-day conditions (>12 h). This prevents horizontal crop spread under a variety of agro-climatic conditions and the development of insensitive genotypes that perform well in all seasons. Therefore, a study was conducted to identify genotypes that are mature early, insensitive to photoperiod, high temperature and tolerant to drought stress. A set of 74 genotypes was evaluated under rainfed conditions in Kharif 2021 (off-season) to select eight promising early-maturing genotypes with high-yielding capacity. Then further investigations were conducted in five different seasons Late Kharif 2021, rabi 2021, summer 2022, early Kharif 2022 and Kharif 2022 to identify the genotypes with photothermo-insensitivity among the selected eight genotypes. With the exception of rabi 2021, each of these seasons were distinct from the chickpea's typical growing season. Among these eight, the stable genotypes which are performed better in all the seasons, especially in summer were considered, such as IPC 06-11, MNK-1, JG-14 and ICE 15654-A as a photothermo-insensitive, were able to flower and set pods with higher seed yield and, resulting in early maturity in a temperature range of 41.4/9.3°C with photoperiods of 13.1/10.9 h to reach in all seasons throughout the year. The heritability was more than 60%. Hence, these genotypes can be used as donor aids in the development of early maturing, drought stress tolerant and photothermo-insensitive chickpea.
Timing of developmental milestones, such as age at first walking, is associated with later diagnoses of neurodevelopmental disorders. However, its relationship to genetic risk for neurodevelopmental disorders in the general population is unknown. Here, we investigate associations between attainment of early-life language and motor development milestones and genetic liability to autism, attention deficit hyperactivity disorder (ADHD), and schizophrenia.
Methods
We use data from a genotyped sub-set (N = 25699) of children in the Norwegian Mother, Father and Child Cohort Study (MoBa). We calculate polygenic scores (PGS) for autism, ADHD, and schizophrenia and predict maternal reports of children's age at first walking, first words, and first sentences, motor delays (18 months), and language delays and a generalised measure of concerns about development (3 years). We use linear and probit regression models in a multi-group framework to test for sex differences.
Results
We found that ADHD PGS were associated with earlier walking age (β = −0.033, padj < 0.001) in both males and females. Additionally, autism PGS were associated with later walking (β = 0.039, padj = 0.006) in females only. No robust associations were observed for schizophrenia PGS or between any neurodevelopmental PGS and measures of language developmental milestone attainment.
Conclusions
Genetic liabilities for neurodevelopmental disorders show some specific associations with the age at which children first walk unsupported. Associations are small but robust and, in the case of autism PGS, differentiated by sex. These findings suggest that early-life motor developmental milestone attainment is associated with genetic liability to ADHD and autism in the general population.
Inflammation and immune activation have been implicated in the pathogenesis of severe mental disorders and cardiovascular disease (CVD). Despite high level of comorbidity, many studies of the immune system in severe mental disorders have not systematically taken cardiometabolic risk factors into account.
Methods
We investigated if inflammatory markers were increased in schizophrenia (SCZ) and affective (AFF) disorders independently of comorbid CVD risk factors. Cardiometabolic risk factors (blood lipids, body mass index and glucose) and CVD-related inflammatory markers CXCL16, soluble interleukin-2 receptor (sIL-2R), soluble CD14 (sCD14), macrophage inhibitory factor and activated leukocyte cell adhesion molecule (ALCAM) were measured in n = 992 patients (SCZ, AFF), and n = 647 healthy controls. We analyzed the inflammatory markers before and after controlling for comorbid cardiometabolic risk factors, and tested for association with psychotropic medication and symptom levels.
Results
CXCL16 (p = 0.03) and sIL-2R (p = 7.8 × 10−5) were higher, while sCD14 (p = 0.05) were lower in patients compared to controls after controlling for confounders, with significant differences in SCZ for CXCL16 (p = 0.04) and sIL-2R (p = 1.1 × 10−5). After adjustment for cardiometabolic risk factors higher levels of sIL-2R (p = 0.001) and lower sCD14 (p = 0.002) remained, also in SCZ (sIL-2R, p = 3.0 × 10−4 and sCD14, p = 0.01). The adjustment revealed lower ALCAM levels (p = 0.03) in patients. We found no significant associations with psychotropic medication or symptom levels.
Conclusion
The results indicate that inflammation, in particular enhanced T cell activation and impaired monocyte activation, are associated with severe mental disorders independent of comorbid cardiometabolic risk factors. This suggests a role of novel pathophysiological mechanisms in severe mental disorders, particularly SCZ.
Measurements of local plasma parameters in dusty plasma are crucial for understanding the physics issues related to such systems. The Langmuir probe, a small electrode immersed in the plasma, provides such measurements. However, designing of a Langmuir probe system in a dusty plasma environment demands special consideration. First, the probe has to be miniaturized enough so that its perturbation on the ambient dust structure is minimal. At the same time, the probe dimensions must be such that a well-defined theory exists for interpretation of its characteristics. The associated instrumentation must also support the measurement of current collected by the probe with high signal to noise ratio. The most important consideration, of course, comes from the fact that the probes are prone to dust contamination, as the dust particles tend to stick to the probe surface and alter the current collecting area in unpredictable ways. This article describes the design and operation of a Langmuir probe system that resolves these challenging issues in dusty plasma. In doing so, first, different theories that are used to interpret the probe characteristics in collisionless as well as in collisional regimes are discussed, with special emphasis on application. The critical issues associated with the current–voltage characteristics of Langmuir probe obtained in different operating regimes are discussed. Then, an algorithm for processing these characteristics efficiently in presence of ion-neutral collisions in the probe sheath is presented.
Ceramics were subjected to organic residue analysis from two collections: a series of middle Copper Age (Bodrogkeresztúr) vessels hitherto known as ‘milk jugs’, curated in the Magyar Nemzeti Múzeum, Budapest, and a collection of early Baden (Boleráz) vessels from the recently discovered settlement of Gyo”r-Szabadrét-domb, in western Hungary. The aim of the analyses was to establish whether or not these vessels, often associated with milk based on typological criteria, were actually used to process, store or serve dairy products. The results of the analyses revealed that no dairy products could be securely identified in the so-called ‘milk jugs’. Nevertheless dairy products were identified in other vessel types.
The presence of trees in central and southern Europe during the last full-glaciation has long been a matter of debate. A low but persistent presence of fossil tree pollen in central and southern European full-glacial paleoecological sequences has been interpreted either as representing long-distance pollen transport from southerly refuges or as representing in situ refugial populations. Here we present macroscopic charcoal results from 31 sequences located throughout Hungary that provide unequivocal evidence for the presence of at least seven different tree types between approximately 32,500 and 16,500 14C yr B.P. This evidence is presented in conjunction with molluscan and pollen analyses to indicate that during the last full-glaciation, trees grew as far north as Hungary, probably in microenvironmentally favorable sites. These areas provided an important cold-stage refugium for the European flora and fauna.
A plausible mechanism underlying flavonoid-associated cognitive effects is increased cerebral blood flow (CBF). However, behavioural and CBF effects following flavanone-rich juice consumption have not been explored. The aim of this study was to investigate whether consumption of flavanone-rich juice is associated with acute cognitive benefits and increased regional CBF in healthy, young adults. An acute, single-blind, randomised, cross-over design was applied with two 500-ml drink conditions – high-flavanone (HF; 70·5 mg) drink and an energy-, and vitamin C- matched, zero-flavanone control. A total of twenty-four healthy young adults aged 18–30 years underwent cognitive testing at baseline and 2-h after drink consumption. A further sixteen, healthy, young adults were recruited for functional MRI assessment, whereby CBF was measured with arterial spin labelling during conscious resting state at baseline as well as 2 and 5 h after drink consumption. The HF drink was associated with significantly increased regional perfusion in the inferior and middle right frontal gyrus at 2 h relative to baseline and the control drink. In addition, the HF drink was associated with significantly improved performance on the Digit Symbol Substitution Test at 2 h relative to baseline and the control drink, but no effects were observed on any other behavioural cognitive tests. These results demonstrate that consumption of flavanone-rich citrus juice in quantities commonly consumed can acutely enhance blood flow to the brain in healthy, young adults. However, further studies are required to establish a direct causal link between increased CBF and enhanced behavioural outcomes following citrus juice ingestion.
In a quasineutral plasma, electrons undergo collective oscillations, known as plasma oscillations, when perturbed locally. The oscillations propagate due to finite temperature effects. However, the wave can lose the phase coherence between constituting oscillators in an inhomogeneous plasma (phase mixing) because of the dependence of plasma oscillation frequency on plasma density. The longitudinal electric field associated with the wave may be used to accelerate electrons to high energies by exciting large amplitude wave. However when the maximum amplitude of the wave is reached that plasma can sustain, the wave breaks. The phenomena of wave breaking and phase mixing have applications in plasma heating and particle acceleration. For detailed experimental investigation of these phenomena a new device, inverse mirror plasma experimental device (IMPED), has been designed and fabricated. The detailed considerations taken before designing the device, so that different aspects of these phenomena can be studied in a controlled manner, are described. Specifications of different components of the IMPED machine and their flexibility aspects in upgrading, if necessary, are discussed. Initial results meeting the prerequisite condition of the plasma for such study, such as a quiescent, collisionless and uniform plasma, are presented. The machine produces δnnoise/n ⩽ 1%, Luniform ~ 120 cm at argon filling pressure of ~10−4 mbar and axial magnetic field of B = 1090 G.
Botanical microfossils, macroremains and oribatid mites of a Weichselian interstadial deposit in the central Netherlands point to a temporary, sub-arctic wetland in a treeless landscape. Radiocarbon dates and OSL dates show an age between ca. 54.6 and 46.6 ka cal BP. The vegetation succession, starting as a peat-forming wetland that developed into a lake, might well be linked with a Dansgaard-Oeschger climatic cycle. We suggest that during the rapid warming at the start of a D-O cycle, relatively low areas in the landscape became wetlands where peat was formed. During the more gradual temperature decline that followed, evaporation diminished; the wetlands became inundated and lake sediments were formed. During subsequent sub-arctic conditions the interstadial deposits were covered with wind-blown sand. Apart from changes in effective precipitation also the climate-related presence and absence of permafrost conditions may have played a role in the formation of the observed sedimentological sequence from sand to peat, through lacustrine sediment, with coversand on top. The Wageningen sequence may correspond with D-O event 12, 13 or 14. Some hitherto not recorded microfossils were described and illustrated.
Uninterrupted provision of vital energy services (see Chapter 1, Section 1.2.2) – energy security – is a high priority of every nation. Energy security concerns are a key driving force of energy policy. These concerns relate to the robustness (sufficiency of resources, reliability of infrastructure, and stable and affordable prices); sovereignty (protection from potential threats from external agents); and resilience (the ability to withstand diverse disruptions) of energy systems. Our analysis of energy security issues in over 130 countries shows that the absolute majority of them are vulnerable from at least one of these three perspectives. For most industrial countries, energy insecurity means import dependency and aging infrastructure, while many emerging economies have additional vulnerabilities such as insufficient capacity, high energy intensity, and rapid demand growth. In many low-income countries, multiple vulnerabilities overlap, making them especially insecure.
Oil and its products lack easily available substitutes in the transport sector, where they provide at least 90% of energy in almost all countries. Furthermore, the global demand for transport fuels is steadily rising, especially rapidly in Asian emerging economies. Disruptions of oil supplies may thus result in catastrophic effects on such vital functions of modern states as food production, medical care, and internal security. At the same time, the global production capacity of conventional oil is widely perceived as limited. These factors result in rising and volatile prices of oil affecting all economies, especially low-income countries, almost all of which import over 80% of their oil supplies.
The global mobile communication industry is growing rapidly. Today there are already more than 4 billion mobile phone subscribers worldwide [1], more than half the entire population of the planet. Obviously, this growth is accompanied by an increased energyconsumption of mobile networks. Global warming and heightened concerns for the environment of the planet require a special focus on the energy efficiency of these systems [2].
Many approaches to wireless energy-efficiency are limited to the power consumption of single nodes, e.g. a base station [3]–[5]. This scope is comparably easy to specify and to measure, but it fails to capture the network performance aspects (e.g. system throughput) implied by coverage and interference issues. Other methodologies are very broad, capturing the ICT industry in total [6]. Recently an assessment framework for the power consumption of deployed wireless networks has been published, the mobile energyefficiency (MEE) network benchmarking service [7], based on metering all components of a network. However, for the energy efficiency it is not possible to directly compare, e.g. an Indian network with a Scandinavian network, therefore MEE has to introduce correction terms for the climate, for the number of base stations operated off-grid, and for the generations of equipment in the field.
However, the above approaches do not give insight into which parts of a network are most energy intensive or which provide the highest energy-saving potentials. There is a need for a simulation tool studying theoretically the effect of improvements in hardware, deployment strategies, and network management.
To our knowledge, no comprehensive, interdisciplinary initiatives have been taken to examine the role of genetic variants on patient-reported quality-of-life outcomes. The overall objective of this paper is to describe the establishment of an international and interdisciplinary consortium, the GENEQOL Consortium, which intends to investigate the genetic disposition of patient-reported quality-of-life outcomes. We have identified five primary patient-reported quality-of-life outcomes as initial targets: negative psychological affect, positive psychological affect, self-rated physical health, pain, and fatigue. The first tangible objective of the GENEQOL Consortium is to develop a list of potential biological pathways, genes and genetic variants involved in these quality-of-life outcomes, by reviewing current genetic knowledge. The second objective is to design a research agenda to investigate and validate those genes and genetic variants of patient-reported quality-of-life outcomes, by creating large datasets. During its first meeting, the Consortium has discussed draft summary documents addressing these questions for each patient-reported quality-of-life outcome. A summary of the primary pathways and robust findings of the genetic variants involved is presented here. The research agenda outlines possible research objectives and approaches to examine these and new quality-of-life domains. Intriguing questions arising from this endeavor are discussed. Insight into the genetic versus environmental components of patient-reported quality-of-life outcomes will ultimately allow us to explore new pathways for improving patient care. If we can identify patients who are susceptible to poor quality of life, we will be able to better target specific clinical interventions to enhance their quality of life and treatment outcomes.
A 7-year-old child was noted to have dextrojuxtaposition of the left atrial appendage at the time of surgical atrial septal defect repair. Given the favourable anatomic location and size of the atrial appendage, it was inverted and used to close the atrial defect. This is the first report of atrial septal defect repair using a juxtaposed atrial appendage. The cardiac anatomy and theoretical benefits of this repair are discussed.