We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Cubature rules are indispensable tools in scientific computing and applied sciences whenever evaluating or discretizing integrals is needed. This monograph is the first comprehensive resource devoted to cubature rules in English since Stroud's classic 1971 book, and the first book about minimal cubature rules. The book explores the subject's theoretical side, which intersects with many branches of mathematics. Minimal cubature rules are intimately connected with common zeros of orthogonal polynomials, which can be described via the polynomial ideals and varieties. Many prominent or practical cubature rules are invariant under a finite group, and some involve symmetric functions and the discrete Fourier transform. Based on state-of-the-art research, the book systematically studies Gauss and minimal cubature rules, and includes a chapter on the practical aspects of construction cubature rules on triangles and simplexes. This comprehensive guide is ideal for researchers and advanced graduate students across the computational and applied mathematics community.
In this paper, we adopt an evolutionary model to describe the coevolution of technological transition and pollution in a country, where the choice of technology does not only give firms access to cleaner (but more expensive) or dirtier (cheaper and illegal) forms of production, but also access to social groups and information. Firms’ activity may be harmful to the environment and, due to the existence of ambient pollution charges, economic activity is affected by the level of pollution in the country. Our analysis describes how the evolution of the transition to clean technology and pollution generates a rich set of possible equilibria, which include stable pure strategies (where all firms choose the same technology) and inner equilibria (where both technologies could be adopted in the long run). We also observe more complex behavior and coexistence of different attractors as well as highlight the importance of initial conditions and uncover how the regulator may face possible pollution traps.
The Erdős–Simonovits stability theorem is one of the most widely used theorems in extremal graph theory. We obtain an Erdős–Simonovits type stability theorem in multi-partite graphs. Different from the Erdős–Simonovits stability theorem, our stability theorem in multi-partite graphs says that if the number of edges of an $H$-free graph $G$ is close to the extremal graphs for $H$, then $G$ has a well-defined structure but may be far away from the extremal graphs for $H$. As applications, we strengthen a theorem of Bollobás, Erdős, and Straus and solve a conjecture in a stronger form posed by Han and Zhao concerning the maximum number of edges in multi-partite graphs which does not contain vertex-disjoint copies of a clique.
Global Navigation Satellite System (GNSS) positioning accuracy is challenged due to abnormal signals in harsh environments. This study proposes an approach for multiple and mixed abnormal measurement processing in multi-GNSS positioning and navigation based on the resilient a priori innovation and posterior residual (PR) for harsh environments. Specifically, first, both static and kinematic processing modes are considered when calculating the innovation vector (IV). Second, observations are classified and abnormal measurements are eliminated based on the different observation accuracies of different GNSS systems within the resilient IV method. Finally, the resilient PR method considers the total number of redundant observations. Compared with the traditional IV and PR method, the RIP method improves the positioning accuracy by approximately 30.2% and 58.0% in static experimental datasets No. 1 and No. 2, respectively. In the kinematic experiment, it improves the ambiguity success rate and positioning accuracy by approximately 41.5% and 86.7%, respectively.
Establishing appropriate action–outcome associations can allow animals and humans to control behavior and the environment in a goal-directed manner. Deficits in instrumental learning in psychosis have been widely reported in past studies, but the results remain elusive.
Study design
To explore the consistent neural representations of instrumental learning in functional magnetic resonance imaging (fMRI) in individuals with psychosis, a total of 18 studies (458 individuals with psychosis and 454 controls) were included in our coordinate-based meta-analysis.
Study results
Patients with psychosis presented increased activation in the left middle occipital gyrus, insula, and lingual and postcentral gyri; decreased activation in cortico-striato-thalamo-cortical (CSTC) networks, including the dorsal striatum, insula, thalamus, middle cingulate cortex, posterior cingulate cortex, dorsolateral, orbital, and medial prefrontal cortices (DLPFC, OFC, and mPFC), cerebellum, and associated sensory areas, during instrumental learning. Moreover, mPFC hypoactivation was negatively associated with the percentage of first-generation antipsychotic users, and insula hyperactivation was negatively associated with the percentage of medicated individuals.
Conclusions
Our study revealed that the CSTC circuit could facilitate action-based reward learning in psychosis and may help explain the neuropathological mechanisms underlying these deficits in this disorder.
We prove the convergence of a Wasserstein gradient flow of a free energy in inhomogeneous media. Both the energy and media can depend on the spatial variable in a fast oscillatory manner. In particular, we show that the gradient-flow structure is preserved in the limit, which is expressed in terms of an effective energy and Wasserstein metric. The gradient flow and its limiting behavior are analysed through an energy dissipation inequality. The result is consistent with asymptotic analysis in the realm of homogenisation. However, we note that the effective metric is in general different from that obtained from the Gromov–Hausdorff convergence of metric spaces. We apply our framework to a linear Fokker–Planck equation, but we believe the approach is robust enough to be applicable in a broader context.
Burkholderia cenocepacia is an environmental Gram-negative bacterium, resistant to many antibiotics and antiseptics, that can survive in aqueous hospital environments. We investigated an outbreak of B. cenocepacia in the intensive care unit (ICU) of Ng Teng Fong General Hospital, aiming to identify the source and prevent further transmission.
Methods:
The outbreak was detected after two ICU patients developed B. cenocepacia bacteremia. Environmental samples, including ultrasound gels, and disinfectants, were collected. Whole genome sequencing (WGS) was used to determine clonality between clinical and environmental isolates. Immediate actions were taken, including a recall of ultrasound gel batches and the use of sterile gel sachets for high-risk procedures.
Results:
Ultrasound gels from opened and unopened bottles from multiple hospital areas, including ICU and Radiology, were found to be contaminated with B. cenocepacia, with a specific batch (Brand A) linked to the outbreak. WGS analysis confirmed the genetic relatedness of clinical and environmental isolates. A hospital-wide recall of affected gel batches was implemented. Through our regional networks, notification of countries in our immediate region along with alerting our local health authorities for further investigation was also undertaken. Additionally, we continued surveillance of gels and identified further contaminated products.
Conclusions:
This outbreak highlights the risks of contaminated medical products, specifically ultrasound gels. Effective environmental sampling, rapid identification, and clear communication with health authorities were key to controlling the outbreak. We have since revised our protocols to mandate the use of sterile gel for invasive procedures and continue monitoring for potential contamination in ultrasound gels.
In a combined experimental and numerical effort, we investigate the generation and reduction of airfoil tonal noise. The means of noise control are streak generators in the form of cylindrical roughness elements. These elements are placed periodically along the span of the airfoil at the mid-chord streamwise position. Experiments are performed for a wide range of Reynolds numbers and angles of attack in a companion work (Alva et al., AIAA Aviation Forum, 2023). In the present work, we concentrate on numerical investigations for a further investigation of selected cases. We have performed wall-resolved large-eddy simulations for a NACA 0012 airfoil at zero angle of attack and Mach 0.3. Two Reynolds numbers (${0.8\times 10^{5}}$ and ${1.0 \times 10^{5}}$) have been investigated, showing acoustic results consistent with experiments at the same Reynolds but lower Mach numbers. Roughness elements attenuate tones in the acoustic field and, for the higher Reynolds number, suppress them. Through Fourier decomposition and spectral proper orthogonal decomposition analysis of streamwise velocity data, dominating structures have been identified. Further, the coupling between the structures generated by the surface roughness and the instability modes (Kelvin–Helmholtz) of the shear layer has been identified through stability analysis, suggesting stabilisation mechanisms by which the sound generation by the airfoil is reduced by the roughness elements.
Limited longitudinal research examining developmental changes in visuospatial working memory (WM) among children and adolescents with autism spectrum disorder (ASD) has prompted our investigation.
Methods
We assessed 123 autistic children and adolescents and 145 typically developing controls (TDC) using the Cambridge Neuropsychological Test Automated Battery at baseline (Time 1 [mean age ± SD]: ASD: 13.04 ± 2.86; TDC: 11.53 ± 2.81) and 2–9 years later (Time 2: ASD: 18.08 ± 3.17; TDC: 16.41 ± 3.09) to measure changes of visuospatial (working) memory over time. The linear mixed model was used to compare the differences between ASD and TDC and estimate the effect of changes over time, age, ASD diagnosis, and interactions of Time×Age×ASD. The overall Age×ASD effect was calculated in the spline regression.
Results
Autistic children and adolescents exhibited significantly poorer performance on all spatial tasks and some visual tasks than their TDC counterparts at Time 1 and Time 2, after adjusting for sex, age, attention deficit/hyperactivity disorder (ADHD), and full-scale intelligence quotient. There was an overall improvement from Time 1 to Time 2 across all tasks with significant Age×Time interactions. Significant Age×ASD interactions were observed in the delayed matching to sample, pattern recognition memory (PRM), spatial span (SSP), and spatial working memory (SWM) tasks with no significant Time×ASD interactions. In the quadratic nonlinear model, Age×ASD interactions were significant in PRM and SSP.
Conclusion
Despite significant improvements during the follow-up period, autistic children and adolescents continue to experience persistent deficits in SWM, with a weaker age-related improvement in visuospatial WM than TDC.
To investigate the effects of activating/inhibiting AmelSmo on the olfactory genes and signalling pathways of Apis mellifera ligustica, as well as the potential regulatory mechanisms involved. Transcriptomic sequencing was performed on Apis mellifera ligustica antennae using Illumina HiSeq platform following administration of cyclopamine (inhibitor) and purmorphamine (agonist). Differential gene expression analysis, coupled with GO and KEGG pathway annotations, facilitated the identification of olfactory receptor genes. The reliability of transcriptome data was subsequently validated through quantitative real–time–polymerase chain reaction analysis. Transcriptomic analysis revealed 12,356 differentially expressed genes (DEGs) between inhibitor and control groups, with 276 genes showing significant differential expression. Similarly, 12,356 DEGs were identified between the agonist and control groups, among which 672 genes exhibited significant differential expression. The GO annotation revealed that the DEGs in the inhibitor group and the agonist group were mainly enriched in the biological process such as cellular process, metabolic process, and biological regulation; in cellular component, enrichment was mainly observed in cell, cell part, and organelle; and in molecular function, the main enrichment was in binding and catalytic activity. KEGG pathway analysis indicated that DEGs from both groups were primarily enriched in signal transduction pathways. Among the DEGs, three olfactory receptor genes were identified in the inhibitor group: odorant receptor 19, odorant receptor 22, and odorant receptor 5. The agonist group exhibited two olfactory receptor genes: odorant receptor 109 and odorant receptor 26. All these olfactory receptor genes demonstrated downregulated expression patterns. Transcriptomic sequencing analysis identified five olfactory receptor genes. The changes in gene expression levels suggest that the activation or inhibition of AmelSmo may regulate the expression of olfactory receptors via the Hedgehog signalling pathway. It is speculated that AmelSmo may play a regulatory role in the olfactory system of bees.
Social scientists are paying attention to the role that knowledge plays in economic phenomena. This focus on knowledge has led to exploring two challenges: first, its governance to reap positive externalities and solve social dilemmas, and second, how we can craft institutions to match the intangible nature of ideas with adequate property rules. This article contributes by elaborating on the different knowledge property regimes and the elements contributing to their classification. This paper first taxonomises knowledge governance regimes based on Ostrom’s work on institutional analysis. Second, it examines why governance structures for managing knowledge production vary across industries, according to (1) the characteristics of knowledge, (2) the attributes of the organisations, and (3) the different rules-in-use to enforce property rights. This is the first study at the intersection of institutional analysis and political economy that highlights the knowledge features, incentive structures, and mechanisms undergirding knowledge governance in different property regimes.
Inspired by the need to theoretically understand the naturally occurring interactions between internal waves and mesoscale phenomena in the ocean, we derive a novel model equation from the primitive rotational Euler equations using the multi-scale asymptotic expansion method. By applying the classic balance $\epsilon =\mu ^2$ between nonlinearity (measured by $\epsilon$) and dispersion (measured by $\mu$), along with the assumption that variations in the transverse direction are of order $\mu$, which is smaller than those in the propagation direction, we arrive at terms from the classic Kadomtsev–Petviashvili equation. However, when incorporating background shear currents in two horizontal dimensions and accounting for Earth’s rotation, we introduce three additional terms that, to the best of the authors’ knowledge, have not been addressed in the previous literature. Theoretical analyses and numerical results indicate that these three terms contribute to a tendency for propagation in the transverse direction and an overall variation in wave amplitudes. The specific effects of these terms can be estimated qualitatively based on the signs of the coefficients for each term and the characteristics of the initial waves. Finally, the potential shortcomings of this proposed equation are illuminated.
This study investigated the factors influencing the mental health of rural doctors in Hebei Province, to provide a basis for improving the mental health of rural doctors and enhancing the level of primary health care.
Background:
The aim of this study was to understand the mental health of rural doctors in Hebei Province, identify the factors that influence it, and propose ways to improve their psychological status and the level of medical service of rural doctors.
Methods:
Rural doctors from 11 cities in Hebei Province were randomly selected, and their basic characteristics and mental health status were surveyed via a structured questionnaire and the Symptom Checklist-90 (SCL-90). The differences between the SCL-90 scores of rural doctors in Hebei Province and the Chinese population norm, as well as the proportion of doctors with mental health problems, were compared. Logistic regression was used to analyse the factors that affect the mental health of rural doctors.
Results:
A total of 2593 valid questionnaires were received. The results of the study revealed several findings: the younger the rural doctors, the greater the incidence of mental health problems (OR = 0.792); female rural doctors were more likely to experience mental health issues than their male counterparts (OR = 0.789); rural doctors with disabilities and chronic diseases faced a significantly greater risk of mental health problems compared to healthy rural doctors (OR = 2.268); rural doctors with longer working hours have a greater incidence of mental health problems; and rural doctors with higher education backgrounds have a higher prevalence of somatization (OR = 1.203).
Conclusion:
Rural doctors who are younger, male, have been in medical service longer, have a chronic illness or disability, and have a high degree of education are at greater risk of developing mental health problems. Attention should be given to the mental health of the rural doctor population to improve primary health care services.
This study introduces a low-profile, broadband antenna with filtering features and tunable radiation nulls. The antenna consists of an arc-shaped slot, a sawtooth square slot, a Y-shaped filtering branch, two rectangular metal cavities, and curved current loops. High-frequency current balancing technology is used in this research, two rectangular metal cavities are added above the slot to balance the current strength and reduce cross-polarization. By introducing a Y-shaped filtering branch based on the reverse diversion technique, the filtering capability of the antenna can be significantly enhanced. The electric and magnetic field intensity in the specific area is enhanced through arc-shaped slot tuning technology, and the bandwidth is effectively broadened. The radius adjustment of the sector-shaped feeding network controls the position of the high-frequency radiation null, and the curved current loops control the low-frequency radiation null, the two modulate to regulate the roll-off rate of the radiation characteristic. Experimental tests demonstrate an impedance matching bandwidth greater than 55%, a peak gain of 4.5 dBi, and out-of-band suppression of 25 and 21 dB in the low and high-frequency bands, respectively. Moreover, the cross-polarization level obtained in the xoz plane is lower than –35 dB. The designed antenna demonstrates considerable potential for broadband filtering applications.
Milk fat is a crucial component for evaluating the production performance and nutritional value of goat milk. Previous research indicated that the composition of ruminal microbiota plays a significant role in regulating milk fat percentage in ruminants. Thus, this study aimed to identify key ruminal microorganisms and blood metabolites relevant to milk fat synthesis in dairy goats as a mean to explore their role in regulating milk fat synthesis. Sixty clinically healthy Xinong Saanen dairy goats at mid-lactation and of similar body weight, and similar milk yield were used in a feeding study for 15 days. Based on daily milk yield of dairy goats and the results of milk component determination on the 1st and 8th days, five goats with the highest milk fat content (H group) and five goats with the lowest milk fat content (L group) were selected for further analysis. Before the morning feeding on the 15th day of the experiment, samples of milk, blood and ruminal fluid were collected for analyses of components, volatile fatty acids, microbiota and metabolites. Results revealed that acetate content in the rumen of H group was greater compared with L group. H group had abundant beneficial bacteria including Ruminococcaceae_UCG-005, Saccharofermentans, Ruminococcaceae-UCG-002 and Prevotellaceae_UCG-3, which were important for plant cellulose and hemicellulose degradation and immune regulation. Metabolomics analysis revealed H group had greater relative concentrations of 4-acetamidobutanoic acid and azelaic acid in serum, and had lower relative concentrations of Arginyl-Alanine, SM(d18:1/12:0) and DL-Tryptophan. These altered metabolites are involved in the sphingolipid signaling pathway, arginine and proline metabolism. Overall, this study identified key ruminal microorganisms and serum metabolites associated with milk fat synthesis in dairy goats. These findings offer insights for enhancing the quality of goat milk and contribute to a better understanding of the regulatory mechanisms involved in milk fat synthesis in dairy goats.
The rupture of a liquid film, where a thin liquid layer between two other fluids breaks and forms holes, commonly occurs in both natural phenomena and industrial applications. The post-rupture dynamics, from initial hole formation to the complete collapse of the film, are crucial because they govern droplet formation, which plays a significant role in many applications such as disease transmission, aerosol formation, spray drying nanodrugs, oil spill remediation, inkjet printing and spray coating. While single-hole rupture has been extensively studied, the dynamics of multiple-hole ruptures, especially the interactions between neighbouring holes, are less well understood. Here, this study reveals that when two holes ‘meet’ on a curved film, the film evolves into a spinning twisted ribbon before breaking into droplets, distinctly different from what occurs on flat films. We explain the formation and evolution of the spinning twisted ribbon, including its geometry, orbits, corrugations and ligaments, and compare the experimental observations with models. We compare and contrast this phenomena with its counterpart on planar films. While our experiments are based on the multiple-hole ruptures in corona splash, the underlying principles are likely applicable to other systems. This study sheds light on understanding and controlling droplet formation in multiple-hole rupture, improving public health, climate science and various industrial applications.