We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Around 1000 years ago, Madagascar experienced the collapse of populations of large vertebrates that ultimately resulted in many species going extinct. The factors that led to this collapse appear to have differed regionally, but in some ways, key processes were similar across the island. This review evaluates four hypotheses that have been proposed to explain the loss of large vertebrates on Madagascar: Overkill, aridification, synergy, and subsistence shift. We explore regional differences in the paths to extinction and the significance of a prolonged extinction window across the island. The data suggest that people who arrived early and depended on hunting, fishing, and foraging had little effect on Madagascar’s large endemic vertebrates. Megafaunal decline was triggered initially by aridification in the driest bioclimatic zone, and by the arrival of farmers and herders in the wetter bioclimatic zones. Ultimately, it was the expansion of agropastoralism across both wet and dry regions that drove large endemic vertebrates to extinction everywhere.
The Endangered Black Shama Kittacincla cebuensis is endemic to the island of Cebu, Philippines. We surveyed 11 forest patches from February 2018 to March 2020 to determine current distribution, habitat requirements, and population density of the Black Shama. A total of 111 point count stations was surveyed resulting in 93 Black Shama detections. Using point count Distance sampling, the population density was estimated at 313 individuals/km2 for a total population of 11,839 individuals (9,160–15,415). The largest sub-population (10,470) was in Alcoy, followed by Argao (711), and Dalaguete (325). Our total population estimate and sub-population estimates were higher than the estimate of 6,650 individuals made by BirdLife International for the International Union for the Conservation of Nature. The species was found to survive in a variety of habitats in at least 20 localities covering roughly 37 km2 of karst forest. We did not encounter the bird in seven areas of its former range. Protection of the remaining forests of Cebu and the establishment of plantations of native tree species in between forest patches are crucial to the survival of the species.
The incidence of preterm birth (PTB), delivery before 37 completed weeks of gestation, is rising in most countries. Several recent small clinical trials of myo-inositol supplementation in pregnancy, which were primarily aimed at preventing gestational diabetes, have suggested an effect on reducing the incidence of PTB as a secondary outcome, highlighting the potential role of myo-inositol as a preventive agent. However, the underlying molecular mechanisms by which myo-inositol might be able to do so remain unknown; these may occur through directly influencing the onset and progress of labour, or by suppressing stimuli that trigger or promote labour. This paper presents hypotheses outlining the potential role of uteroplacental myo-inositol in human parturition and explains possible underlying molecular mechanisms by which myo-inositol might modulate the uteroplacental environment and inhibit preterm labour onset. We suggest that a physiological decline in uteroplacental inositol levels to a critical threshold with advancing gestation, in concert with an increasingly pro-inflammatory uteroplacental environment, permits spontaneous membrane rupture and labour onset. A higher uteroplacental inositol level, potentially promoted by maternal myo-inositol supplementation, might affect lipid metabolism, eicosanoid production and secretion of pro-inflammatory chemocytokines that overall dampen the pro-labour uteroplacental environment responsible for labour onset and progress, thus reducing the risk of PTB. Understanding how and when inositol may act to reduce PTB risk would facilitate the design of future clinical trials of maternal myo-inositol supplementation and definitively address the efficacy of myo-inositol prophylaxis against PTB.
The Promoting Activity, Independence and Stability in Early Dementia (PrAISED) is delivering an exercise programme for people with dementia. The Lincolnshire partnership NHS foundation Trust successfully delivered PrAISED through a video-calling platform during the COVID-19 pandemic.
Objectives
This qualitative case-study identified participants that video delivery worked for, and highlighted its benefits and challenges.
Methods
Interviews were conducted with participants with dementia, caregivers and therapists, and analysed through thematic analysis.
Results
Video delivery worked best when participants had a supporting carer, when therapists showed enthusiasm and had an established rapport with the client. Benefits included time-efficiency of sessions, enhancing participants’ motivation, caregivers’ dementia awareness and therapists’ creativity. Limitations included users’ poor IT skills and resources.
Conclusions
The COVID-19 pandemic required innovative ways of delivering rehabilitation. This study supports that people with dementia can use tele rehab, but success is reliant on having a caregiver and an enthusiastic and known therapist.
This study aimed to determine whether age at introduction of solid foods was associated with feeding difficulties at 3 years of age. The present study was carried out using data from the Southampton Women’s Survey (SWS). Women enrolled in the SWS who subsequently became pregnant were followed-up during pregnancy and postpartum, and the offspring have been studied through childhood. Maternal socio-demographic and anthropometric data and child anthropometric and feeding data were collected through interviews and self-administered questionnaires. When the children were 3 years of age, mothers/carers rated six potential child feeding difficulty questions on a four-point Likert scale, including one general question and five specific feeding difficulty questions. Age at introduction of solids as a predictor of feeding difficulties was examined in 2389 mother–child pairs, adjusting for child (age last breast fed, sex, gestation) and maternal characteristics (parity, pre-pregnancy BMI, age, education, employment, parenting difficulties, diet quality). The majority of mothers/carers (61 %) reported some feeding difficulties (general feeding difficulty question) at 3 years of age, specifically with their child eating enough food (61 %), eating the right food (66 %) and being choosy with food (74 %). Children who were introduced to solids ≥6 months had a lower risk of feeding difficulties (RR 0·73; 95 % CI 0·59, 0·91, P=0·004) than children who were introduced to solids between 4 and 6 months. No other significant associations were found. There were few associations between feeding difficulties in relation to age at introduction of solid foods. However, general feeding difficulties were less common among infants introduced to solid foods ≥6 months of age.
Recently, large-scale trials of behavioural interventions have failed to show improvements in pregnancy outcomes. They have, however, shown that lifestyle support improves maternal diet and physical activity during pregnancy, and can reduce weight gain. This suggests that pregnancy, and possibly the whole periconceptional period, represents a ‘teachable moment’ for changes in diet and lifestyle, an idea that was made much of in the recent report of the Chief Medical Officer for England. The greatest challenge with all trials of diet and lifestyle interventions is to engage people and to sustain this engagement. With this in mind, we propose a design of intervention that aims simultaneously to engage women through motivational conversations and to offer access to a digital platform that provides structured support for diet and lifestyle change. This intervention design therefore makes best use of learning from the trials described above and from recent advances in digital intervention design.
Thirty-nine epileptic patients underwent pulmonary function testing. Twenty-one of these patients, ranging in age from 16 to 44 years, had taken diphenylhydantoin (DPH) for 2 to 17 years. Eighteen patients, who had taken other anticonvulsants for similar time periods served as controls. Five patients in the DPH group had lung volume abnormalities, four had abnormal airway function, and five had abnormalities of alveolar gas mixing. One patient in the control group had lung volume abnormalities, two had abnormal airway function, and five had abnormalities of alveolar gas mixing. Statistical analysis revealed no significant differences between the groups, or between either group and predicted values.
Both maternal 25-hydroxyvitamin D (25(OH)D) concentrations during pregnancy andplacental amino acid transporter gene expression have been associated withdevelopment of the offspring in terms of body composition and bone structure.Several amino acid transporter genes have vitamin D response elements in theirpromoters suggesting the possible linkage of these two mechanisms. We aimed toestablish whether maternal 25(OH)D and vitamin D-binding protein (VDBP) levelsrelate to expression of placental amino acid transporters. RNA was extractedfrom 102 placental samples collected in the Southampton Women's Survey,and gene expression was analysed using quantitative real-time PCR. Geneexpression data were normalised to the geometric mean of three housekeepinggenes, and related to maternal factors and childhood body composition. Maternalserum 25(OH)D and VDBP levels were measured by radioimmunoassay. Maternal25(OH)D and VDBP levels were positively associated with placental expression ofspecific genes involved in amino acid transport. Maternal 25(OH)D and VDBPconcentrations were correlated with the expression of specific placental aminoacid transporters, and thus may be involved in the regulation of amino acidtransfer to the fetus. The positive correlation of VDBP levels and placentaltransporter expression suggests that delivery of vitamin D to the placenta maybe important. This exploratory study identifies placental amino acidtransporters which may be altered in response to modifiable maternal factors andprovides a basis for further studies.
Various environmental factors have been associated with the timing of eruption of primary dentition, but the evidence to date comes from small studies with limited information on potential risk factors. We aimed to investigate associations between tooth emergence patterns and pre-conception, pregnancy and postnatal influences. Dentition patterns were recorded at ages 1 and 2 years in 2915 children born to women in the Southampton Women’s Survey from whom information had been collected on maternal factors before conception and during pregnancy. In mutually adjusted regression models we found that: children were more dentally advanced at ages 1 and 2 years if their mothers had smoked during pregnancy or they were longer at birth; mothers of children whose dental development was advanced at age 2 years tended to have poorer socioeconomic circumstances, and to have reported a slower walking speed pre-pregnancy; and children of mothers of Asian ethnicity had later tooth development than those of white mothers. The findings add to the evidence of environmental impacts on the timing of the eruption of primary dentition in indicating that maternal smoking during pregnancy, socio-economic status and physical activity (assessed by reported walking speed) may influence the child’s primary dentition. Early life factors, including size at birth are also associated with dentition patterns, as is maternal ethnicity.
Ectothermic species are fundamentally affected by environmental temperatures, which largely dictate their metabolic rate. In marine turtles, foraging behavior, migratory patterns, and ultimately breeding success may be modulated by the environment and influenced by climate change. This has the potential to have both positive and negative effects. The seven species of marine turtles broadly occupy three foraging niches (planktivory, herbivory, and omnivory) and occur in almost every non-polar ocean basin in the world, from shallow coastal seas to open ocean habitats. The effects of climate change to marine turtles likely will be wide ranging and of direct relevance to other marine animals in these varied habitats. Marine turtles are a fascinating “canary in the coal mine” with which to study the effects of climate change in marine habitats, and there has been an exponential increase in interest in the effects of climate change on them in the last decade (Poloczanska et al., 2009; Hamann et al., 2010; Hawkes et al., 2010). Marine turtles are also generally considered charismatic, making them ideal subjects with which to raise awareness of climate change effects to biodiversity and to increase support for effective management and conservation of marine environments.
The gut microbiota plays an important role in the development of the immune and gastrointestinal systems of infants. In the present study, we investigated whether increased salmon consumption during pregnancy, maternal weight gain during pregnancy or mode of infant feeding alter the markers of gut immune defence and inflammation. Women (n 123) who rarely ate oily fish were randomly assigned to continue consuming their habitual diet or to consume two 150 g portions of farmed salmon per week from 20 weeks of pregnancy to delivery. Faecal samples were collected from the mothers (n 75) at 38 weeks of gestation and from their infants (n 38) on days 7, 14, 28 and 84 post-partum. Fluorescence in situ hybridisation was used to determine faecal microbiota composition and ELISA to measure faecal secretory IgA (sIgA) and calprotectin concentrations. There was no effect of salmon consumption on maternal faecal microbiota or on maternal or infant faecal sIgA and calprotectin concentrations. The degree of weight gain influenced maternal faecal microbiota, and the mode of infant feeding influenced infant faecal microbiota. Faecal samples collected from infants in the salmon group tended to have lower bacterial counts of the Atopobium cluster compared with those collected from infants in the control group (P= 0·097). This difference was significant in the formula-fed infants (P< 0·05), but not in the exclusively breast-fed infants. In conclusion, the impact of oily fish consumption during pregnancy on maternal and infant gut microbiota composition is limited, but significant differences are associated with maternal weight gain during pregnancy and mode of infant feeding.
Preliminary specifications for the Square Kilometre Array (SKA) call for 25% of the total collecting area of the dish array to be located at distances greater than 180 km from the core, with a maximum baseline of at least 3000 km. The array will provide angular resolution θ ≲ 40–2 mas at 0.5–10 GHz with image sensitivity reaching ≲50 nJy beam−1 in an 8-hour integration with 500-MHz bandwidth. Given these specifications, the high-angular-resolution component of the SKA will be capable of detecting brightness temperatures ≲200K with milliarcsecond-scale angular resolution. The aim of this article is to bring together in one place a discussion of the broad range of new and important high-angular-resolution science that will be enabled by the SKA, and in doing so, address the merits of long baselines as part of the SKA. We highlight the fact that high angular resolution requiring baselines greater than 1000 km provides a rich science case with projects from many areas of astrophysics, including important contributions to key SKA science.
The largely deforested island of Cebu, Philippines, hosts a forest-dwelling hawk-owl identified in the literature as Ninox philippensis spilonota but which is in fact a Cebu island endemic species, soon to be named. To determine the current distribution and habitat requirements of this hawk-owl, the five largest of 11 remaining forest patches on Cebu were surveyed between March and June 2011, involving 64 post-sunset 500-m walked transects with playback and habitat assessments. Radio-telemetry studies were also conducted on 10 owls but only for 3–5 days per owl as they removed the transmitters. A total of 52 owls were located across all five forests (at 16 sites two owls responded together to playback) but only the largest forest, Alcoy, contained enough transects for analyses of habitat in relation to owl distribution. Alcoy stands on steep-sided hills and some planting of exotic species occurs within it. Owls were detected in forest interior, forest edge and forest-plantation mix in Alcoy, and on ridges and in gullies despite lower tree densities and greater proximity to clearings in the gullies. However, parts of Alcoy experience strong winds, and owl occupancy decreased significantly with increasing wind speed. Home ranges for the 10 radio-tagged owls were estimated to cover ∼10 ha, although given the short tracking periods this may be an underestimate. Suitable forest studied covers roughly 1,670 ha, with six unstudied forests totalling 250 ha, so assuming a pair every 10 ha would give a tentative global population estimate of ∼ 200 pairs of Cebu Hawk-owls, and even fewer if home ranges are larger than estimated. This, coupled with continuing habitat degradation, triggers the IUCN Red List category ‘Endangered’. Tree cavities suitable for nests may be limiting, and nest-box provision could be explored, provided this does not increase predator pressure on other rare species.
Early growth is associated with later risk of osteoporosis and fractures. In this study, we aimed to evaluate the relationships between maternal lifestyle and body composition and neonatal bone size, geometry and density in the offspring. Participants were recruited from the Southampton Women’s Survey, a unique prospective cohort of 12,500 initially non-pregnant women aged 20–34 years, resident in Southampton, UK. These women were studied in detail before and during pregnancy, and the offspring underwent anthropometric and bone mineral assessment (using dual energy-X-ray absorptiometry) at birth. A total of 841 mother–baby pairs were studied (443 boys and 398 girls). The independent predictors of greater neonatal whole body bone area (BA) and bone mineral content included greater maternal birthweight, height, parity, triceps skinfold thickness and lower walking speed in late pregnancy. Maternal smoking was independently associated with lower neonatal bone mass. Neonatal BA adjusted for birth length (a measure of bone width) was predicted positively by maternal parity and late pregnancy triceps skinfold thickness and negatively by late pregnancy walking speed. These findings were similar in both genders. We have confirmed, in a large cohort, previous findings that maternal lifestyle and body build predict neonatal bone mineral; additionally, maternal parity and fat stores and walking speed in late pregnancy were associated with neonatal bone geometry. These findings may suggest novel public health strategies to reduce the burden of osteoporotic fracture in future generations.