We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, on–off switching digitization of a W-band variable gain power amplifier (VGPA) with above 60 dB dynamic range is introduced for large-scale phased array. Digitization techniques of on–off switching modified stacking transistors with partition are proposed to optimize configuration of control sub-cells. By the proposed techniques, gain control of a radio frequency variable gain amplifier (VGA) could be highly customized for both coarse and fine switching requirements instead of using additional digital-to-analog converters to tune the overall amplifier bias. The designed VGA in 130 nm SiGe has achieved switchable gain range from −46.4 to 20.6 dB and power range from −25.0 to 15.7 dBm at W band. The chip size of the fabricated VGPA is about 0.31 mm × 0.1 mm.
In contemporary neuroimaging studies, it has been observed that patients with major depressive disorder (MDD) exhibit aberrant spontaneous neural activity, commonly quantified through the amplitude of low-frequency fluctuations (ALFF). However, the substantial individual heterogeneity among patients poses a challenge to reaching a unified conclusion.
Methods
To address this variability, our study adopts a novel framework to parse individualized ALFF abnormalities. We hypothesize that individualized ALFF abnormalities can be portrayed as a unique linear combination of shared differential factors. Our study involved two large multi-center datasets, comprising 2424 patients with MDD and 2183 healthy controls. In patients, individualized ALFF abnormalities were derived through normative modeling and further deconstructed into differential factors using non-negative matrix factorization.
Results
Two positive and two negative factors were identified. These factors were closely linked to clinical characteristics and explained group-level ALFF abnormalities in the two datasets. Moreover, these factors exhibited distinct associations with the distribution of neurotransmitter receptors/transporters, transcriptional profiles of inflammation-related genes, and connectome-informed epicenters, underscoring their neurobiological relevance. Additionally, factor compositions facilitated the identification of four distinct depressive subtypes, each characterized by unique abnormal ALFF patterns and clinical features. Importantly, these findings were successfully replicated in another dataset with different acquisition equipment, protocols, preprocessing strategies, and medication statuses, validating their robustness and generalizability.
Conclusions
This research identifies shared differential factors underlying individual spontaneous neural activity abnormalities in MDD and contributes novel insights into the heterogeneity of spontaneous neural activity abnormalities in MDD.
Hydrogen sulfide (H2S) has been shown to play a significant role in oxidative stress across various tissues and cells; however, its role in sperm function remains poorly understood. This study aimed to investigate the protective effect of GYY4137, a slow-releasing H2S compound, on sperm damage induced by H2O2. We assessed the effects of GYY4137 on motility, viability, lipid peroxidation and caspase-3 activity in human spermatozoa in vitro following oxidative damage mediated by H2O2. Spermatozoa from 25 healthy men were selected using a density gradient centrifugation method and cultured in the presence or absence of 10 μM H2O2, followed by incubation with varying concentrations of GYY4137 (0.625–2.5 μM). After 24 h of incubation, sperm motility, viability, lipid peroxidation, and caspase-3 activity were evaluated. The results indicated that H2O2 adversely affected sperm parameters, reducing motility and viability, while increasing oxidative stress, as evidenced by elevated lipid peroxidation and caspase-3 activity. GYY4137 provided dose-dependent protection against H2O2-induced oxidative stress (OS). We concluded that supplementation with GYY4137 may offer antioxidant protection during in vitro sperm preparation for assisted reproductive technology.
Whether material deprivation-related childhood socio-economic disadvantages (CSD) and care-related adverse childhood experiences (ACE) have different impacts on depressive symptoms in middle-aged and older people is unclear.
Methods
In the Guangzhou Biobank Cohort Study, CSD and ACE were assessed by 7 and 5 culturally sensitive questions, respectively, on 8,716 participants aged 50+. Depressive symptoms were measured by 15-item Geriatric Depression Scale (GDS). Multivariable linear regression, stratification analyses, and mediation analyses were done.
Results
Higher CSD and ACE scores were associated with higher GDS score in dose-response manner (P for trend <0.001). Participants with one point increment in CSD and ACE had higher GDS score by 0.11 (95% confidence interval [CI], 0.09–0.14) and 0.41 (95% CI, 0.35–0.47), respectively. The association of CSD with GDS score was significant in women only (P for sex interaction <0.001; women: β (95% CI)=0.14 (0.11–0.17), men: 0.04 (−0.01 to 0.08)). The association between ACE and GDS score was stronger in participants with high social deprivation index (SDI) (P for interaction = 0.01; low SDI: β (95% CI)=0.36 (0.29–0.43), high SDI: 0.64 (0.48–0.80)). The proportion of association of CSD and ACE scores with GDS score mediated via education was 20.11% and 2.28%.
Conclusions
CSD and ACE were associated with late-life depressive symptoms with dose-response patterns, especially in women and those with low adulthood socio-economic status. Education was a major mediator for CSD but not ACE. Eliminating ACE should be a top priority.
The flow-induced vibrations (FIVs) of two identical tandem square cylinders with mass ratio m* = 3.5 at Reynolds number Re = 150 are investigated through two-dimensional direct numerical simulation (DNS) and linear stability analysis over a parameter range of spacing ratio 1.5 ≤ L* ≤ 5 and reduced velocity 3 ≤ Ur ≤ 34. Three kinds of FIV responses, namely vortex-induced vibration (VIV), biased oscillation (BO) and galloping (GA), are identified. The FIVs are then further classified into the branches of initial VIV (IV), resonant VIV (RV and RV′), flutter-induced VIV (FV), desynchronized VIV (DV), VIV developing from GA (GV), transitional state between VIV and GA (TR), BO and GA based on the characteristics of the vibration responses. The transitions among different FIV branches are examined by combining the DNS with linear stability analysis, where the transition boundaries among the VIV, BO and GA branches over the concerned parameters are identified on the branch maps. The transition from IV to RV or RV′ is found to be related to the unstable wake mode, while the FV, transiting from RV or RV′, is induced by the unstable structural factor in the wake-structure mode. The structural instability is considered as the physical origin of GA, whereas the mode competition between unstable wake and structure leads to DV, GV and TR, and thus delays the appearance of GA. The transition from DV to BO with biased equilibrium position, accompanied by the even-order harmonic frequencies, is essentially induced by the symmetry breaking bifurcation.
Hong Kong experienced four epidemic waves caused by the ancestral strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2020–2021 and a large Omicron wave in 2022. Few studies have assessed antibacterial prescribing for coronavirus disease 2019 (COVID-19) inpatients throughout the pandemic.
Objectives:
To describe inpatient antibacterial prescribing and explore factors associated with their prescription.
Methods:
Electronic health records of patients with COVID-19 admitted to public hospitals in Hong Kong from 21 January 2020 to 30 September 2022 were used to assess the prevalence and rates of inpatient antibacterial drug use (days of therapy/1,000 patient days [DOT/1,000 PD]). We used multivariable logistic regression to investigate potential associations between patients’ baseline characteristics and disease severity and prescription of an antibacterial drug during hospital admission.
Results:
Among 65,810 inpatients with COVID-19, 54.0% were prescribed antibacterial drugs (550.5 DOT/1,000 PD). Compared to waves 1–2 (46.7%; 246.9 DOT/1,000 PD), the prescriptions were lowest during wave 4 (28.0%; 246.9; odds ratio (OR): 0.39, 95% CI: 0.31–0.49) and peaked in early wave 5 (64.6%; 661.2; 0.82, 0.65–1.03). Older age (≥80 years: OR 2.66, 95% CI, 2.49–2.85; 60–79 years: 1.59, 1.51–1.69, compared with 20–59 years), more severe disease (fatal: 3.64, 3.2–4.16; critical: 2.56, 2.14–3.06, compared with severe), and COVID-19 vaccine doses (two doses: 0.74, 0.69–0.78; three doses: 0.69, 0.64–0.74; four doses: 0.52, 0.44–0.62, compared with unvaccinated) were associated with inpatient antibacterial drug use.
Conclusions:
Antibacterial prescribing changed over time for hospitalized patients with confirmed COVID-19 and was potentially related to patients’ demographics, medical conditions, and COVID-19 vaccination status as well as healthcare capacity during epidemic waves.
Longitudinal studies on the variations of phenotypic and genotypic characteristics of K. pneumoniae across two decades are rare. We aimed to determine the antimicrobial susceptibility and virulence factors for K. pneumoniae isolated from patients with bacteraemia or urinary tract infection (UTI) from 1999 to 2022. A total of 699 and 1,267 K. pneumoniae isolates were isolated from bacteraemia and UTI patients, respectively, and their susceptibility to twenty antibiotics was determined; PCR was used to identify capsular serotypes and virulence-associated genes. K64 and K1 serotypes were most frequently observed in UTI and bacteraemia, respectively, with an increasing frequency of K20, K47, and K64 observed in recent years. entB and wabG predominated across all isolates and serotypes; the least frequent virulence gene was htrA. Most isolates were susceptible to carbapenems, amikacin, tigecycline, and colistin, with the exception of K20, K47, and K64 where resistance was widespread. The highest average number of virulence genes was observed in K1, followed by K2, K20, and K5 isolates, which suggest their contribution to the high virulence of K1. In conclusion, we found that the distribution of antimicrobial susceptibility, virulence gene profiles, and capsular types of K. pneumoniae over two decades were associated with their clinical source.
Coastal eutrophication and hypoxia remain a persistent environmental crisis despite the great efforts to reduce nutrient loading and mitigate associated environmental damages. Symptoms of this crisis have appeared to spread rapidly, reaching developing countries in Asia with emergences in Southern America and Africa. The pace of changes and the underlying drivers remain not so clear. To address the gap, we review the up-to-date status and mechanisms of eutrophication and hypoxia in global coastal oceans, upon which we examine the trajectories of changes over the 40 years or longer in six model coastal systems with varying socio-economic development statuses and different levels and histories of eutrophication. Although these coastal systems share common features of eutrophication, site-specific characteristics are also substantial, depending on the regional environmental setting and level of social-economic development along with policy implementation and management. Nevertheless, ecosystem recovery generally needs greater reduction in pressures compared to that initiated degradation and becomes less feasible to achieve past norms with a longer time anthropogenic pressures on the ecosystems. While the qualitative causality between drivers and consequences is well established, quantitative attribution of these drivers to eutrophication and hypoxia remains difficult especially when we consider the social economic drivers because the changes in coastal ecosystems are subject to multiple influences and the cause–effect relationship is often non-linear. Such relationships are further complicated by climate changes that have been accelerating over the past few decades. The knowledge gaps that limit our quantitative and mechanistic understanding of the human-coastal ocean nexus are identified, which is essential for science-based policy making. Recognizing lessons from past management practices, we advocate for a better, more efficient indexing system of coastal eutrophication and an advanced regional earth system modeling framework with optimal modules of human dimensions to facilitate the development and evaluation of effective policy and restoration actions.
Nutritional Risk Screening index is a standard tool to assess nutritional risk, but epidemiological data are scarce on controlling nutritional status (CONUT) as a prognostic marker in acute haemorrhagic stroke (AHS). We aimed to explore whether the CONUT may predict a 3-month functional outcome in AHS. In total, 349 Chinese patients with incident AHS were consecutively recruited, and their malnutrition risks were determined using a high CONUT score of ≥ 2. The cohort patients were divided into high-CONUT (≥ 2) and low-CONUT (< 2) groups, and primary outcomes were a poor functional prognosis defined as the modified Rankin Scale (mRS) score of ≥ 3 at post-discharge for 3 months. Odds ratios (OR) with 95 % confidence intervals (CI) for the poor functional prognosis at post-discharge were estimated by using a logistic analysis with additional adjustments for unbalanced variables between the high-CONUT and low-CONUT groups. A total of 328 patients (60·38 ± 12·83 years; 66·77 % male) completed the mRS assessment at post-discharge for 3 months, with 172 patients at malnutrition risk at admission and 104 patients with a poor prognosis. The levels of total cholesterol and total lymphocyte counts were significantly lower in high-CONUT patients than low-CONUT patients (P = 0·012 and < 0·001, respectively). At 3-month post discharge, there was a greater risk for the poor outcome in the high-CONUT compared with the low-CONUT patients at admission (OR: 2·32, 95 % CI: 1·28, 4·17). High-CONUT scores independently predict a 3-month poor prognosis in AHS, which helps to identify those who need additional nutritional managements.
Although the morphology of oblique detonation waves (ODWs) has been widely studied, it remains impossible to predict the wave systems in the initiation region, which is a critical component in promoting engine applications. Such wave systems are usually viewed as secondary ODWs or compression waves (CWs), introducing some structural ambiguities and contradictions with recent observations. In this study, ODWs are simulated numerically in a stoichiometric hydrogen–air mixture and their morphological features are analysed. To cover a wide range of flight conditions physically, the control parameters are the flight altitude $H_{0}$ and Mach number $M_{1}$ of an ODW-based engine. Numerical results reveal the morphological variations with respect to $H_{0}$ and $M_{1}$, within which two special wave systems arise. One wave system indicates that the CW might induce an abrupt transition, and the other indicates that the classical secondary ODW might evolve into a normal detonation wave, another illustration of the well-known ‘detonation-behind-shock’ wave configurations. To clarify the mechanism of wave system variation, a geometric analysis of two characteristic heights demonstrates that the wave system could be predicted from the viewpoint of CW convergence. Moreover, analysis of the induction zone Mach number, compared with the corresponding Chapman–Jouguet Mach number, provides a criterion for the normal detonation wave formation. These semi-theoretical approaches collectively enhance our understanding of the wave system physically.
The aim of this study was to assess the current status of disease-related knowledge and to analyze the relationship among the general condition, illness perception, and psychological status of patients with coronavirus disease 2019 (COVID-19).
Methods:
A hospital-based cross-sectional study was conducted on 118 patients using convenience sampling. The general questionnaire, disease-related knowledge questionnaire of COVID-19, Illness Perception Questionnaire (IPQ), and Profile of Mood States (POMS) were used to measure the current status of participants.
Results:
The overall average score of the disease-related knowledge of patients with COVID-19 was (79.19 ± 14.25), the self-care situation was positively correlated with knowledge of prevention and control (r = 0.265; P = 0.004) and total score of disease-related knowledge (r = 0.206; P = 0.025); the degree of anxiety was negatively correlated with the knowledge of diagnosis and treatment (r = −0.182; P = 0.049). The score of disease-related knowledge was negatively correlated with negative cognition (volatility, consequences, emotional statements) and negative emotions (tension, fatigue, depression) (P < 0.05); positively correlated with positive cognition (disease coherence) and positive emotion (self-esteem) (P < 0.05).
Conclusions:
It was recommended that we should pay more attention to the elderly and low-income groups, and increase the knowledge about diagnosis and treatment of COVID-19 and self-care in the future health education for patients.
We carry out direct numerical simulations of turbulent Rayleigh–Bénard convection in a square box with rough conducting plates over the Rayleigh number range $10^7\leqslant Ra\leqslant 10^9$ and the Prandtl number range $0.01\leqslant Pr\leqslant 100$. In Zhang et al. (J. Fluid Mech., vol. 836, 2018, R2), it was reported that while the measured Nusselt number $Nu$ is enhanced at large roughness height $h$, the global heat transport is reduced at small $h$. The division between the two regimes yields a critical roughness height $h_c$, and we now focus on the effects of the Prandtl number ($Pr$) on $h_c$. Based on the variations of $h_c$, we identify three regimes for $h_c(Pr)$. For low $Pr$, thermal boundary layers become thinner with increasing $Pr$. This makes the boundary layers easier to be disrupted by rough elements, leading to the decrease of $h_c$ with increasing $Pr$. For moderate $Pr$, the corner-flow rolls become much more pronounced and suppress the global heat transport via the competition between the corner-flow rolls and the large-scale circulation (LSC). As a consequence, $h_c$ increases with increasing $Pr$ due to the intensification of the corner–LSC competition. For high $Pr$, the convective flow transitions to the plume-controlled regime. As the rough elements trigger much stronger and more frequent plume emissions, $h_c$ again decreases with increasing $Pr$.
The East Asian winter monsoon (EAWM) is one of the most dynamic components of the global climate system. Although poorly understood, knowledge of long-term spatial differences in EAWM variability during the glacial–interglacial cycles is important for understanding the dynamic processes of the EAWM. We reconstructed the spatiotemporal characteristics of the EAWM since the last glacial maximum (LGM) using a comparison of proxy records and long-term transient simulations. A loess grain-size record from northern China (a sensitive EAWM proxy) and the sea surface temperature gradient of an EAWM index in sediments of the southern South China Sea were compared. The data–model comparison indicates pronounced spatial differences in EAWM evolution, with a weakened EAWM since the LGM in northern China but a strengthened EAWM from the LGM to the early Holocene, followed by a weakening trend, in southern China. The model results suggest that variations in the EAWM in northern China were driven mainly by changes in atmospheric carbon dioxide (CO2) concentration and Northern Hemisphere ice sheets, whereas orbital insolation and ice sheets were important drivers in southern China. We propose that the relative importance of insolation, ice sheets, and atmospheric CO2 for EAWM evolution varied spatially within East Asia.
A simple and effective strategy is proposed for fabricating honeycomb-patterned ethyl cellulose (EC) films via a combination of the dip-coating and breath figure methods under a wide humidity range (40–90%). A mixture of toluene and methanol as a volatile solvent/nonsolvent pair was used to effectively control the surface morphology. Additionally, honeycomb patterns were successfully formed via dip-coating under a low humidity (relative humidity less than 40%), when water was directly added into the mixed solution. The important factors that influenced the morphology of EC honeycomb-patterned films were investigated, such as the humidity, solution concentration, and the withdrawal speed during dip-coating. The pore sizes could be controlled by changing the film-formation conditions. Water contact angle enables a transition from hydrophilic to hydrophobic. The possible mechanisms of honeycomb pattern formation are discussed. The fabrication of an ordered honeycomb-patterned film in a cost-effective and convenient manner will have broad application potential in the future.
We aimed to describe the clinical features in coronavirus disease 2019 (COVID-19) cases. We studied 134 critically ill COVID-19 cases from 30 December 2019 to 20 February 2020 in an intensive care unit (ICU) at Wuhan Jinyintan Hospital. Demographics, underlying diseases, therapy strategies and test results were collected and analysed from patients on admission, admission to the ICU and 48 h before death. The non-survivors were older (65.46 (s.d. 9.74) vs. 46.45 (s.d. 11.09)) and were more likely to have underlying diseases. The blood group distribution of the COVID-19 cases differed from that of the Han population in Wuhan, with type A being 43.85%; type B, 26.92%; type AB, 10% and type O, 19.23%. Non-survivors tend to develop more severe lymphopaenia, with higher C-reactive protein, interleukin-6, procalcitonin, D-dimer levels and gradually increased with time. The clinical manifestations were non-specific. Compared with survivors, non-survivors more likely to have organ function injury, and to receive mechanical ventilation, either invasively or noninvasively. Multiple organ failure and secondary bacterial infection in the later period is worthy of attention.
A novel ionic liquid/α-ZrP (C16MIM/α-ZrP) lamellar nanocomposite was fabricated via the electrostatic self-assembly deposition technique by using exfoliated α-ZrP nanosheets and guest molecules (1-hexadecyl-3-methylimidazolium bromide) as building blocks under mild conditions. C16MIM/α-ZrP nanocomposite was characterized by various analytical techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscope (SEM), Fourier transform infrared spectroscopy, and synchronous thermal analyzer. The net interlayer spacing of α-ZrP determined by XRD confirmed that the C16MIM cations formed a monolayer arrangement between the α-ZrP nanosheets. The morphology and microstructure of C16MIM/α-ZrP composite were observed using SEM and TEM. The C16MIM/α-ZrP modified glass carbon electrode exhibited excellent electrocatalytic activity toward the oxidation of nitrite in weak base media. The results obtained with differential pulse voltammetry demonstrated that the C16MIM/α-ZrP hybrid detected nitrite linearly in the concentration range from 7.3 μM to 1.25 mM with the detection limit of 1.26 μM (S/N = 3). Additionally, the prepared sensor showed outstanding reproducibility, high stability, and anti-interference capability.
The present study was conducted to evaluate the impact of dietary fully oxidised β-carotene (OxBC, C40H60O15) supplementation during the perinatal period on immune status and productivity in a sow model. At day 85 of pregnancy, 150 sows were allocated to one of three dietary treatments with fifty sows per treatment. The three experimental diets were supplemented with 0, 4 or 8 mg/kg OxBC in the basal diet. The feeding trial was conducted from gestation day 85 until day 21 of lactation. Dietary OxBC supplementation greatly enhanced colostrum IgM, IgA and IgG levels, and the IgM and IgG content of 14-d milk. Dietary OxBC supplementation decreased the TNF-α and IL-8 levels in colostrum, as well as the TNF-α and IL-18 levels in 14-d milk. There was also a tendency towards an increase in the soluble CD14 level in 14-d milk. Although dietary treatments did not affect average daily feed intake nor backfat thickness loss during lactation, dietary OxBC supplementation tended to enhance litter weight and individual piglet weight at weaning. There was a trend towards increased lactose concentration in 14-d milk with increasing dietary OxBC. It is concluded that dietary supplementation with OxBC during the perinatal period enhances the lactose concentration of sow milk and the immune status of sows, which is reflected by improved cytokine status and immunoglobulin concentrations in colostrum and milk, and thus tending to increase litter weight and individual piglet weight at weaning. The results also provide a scientific nutritional reference for perinatal mothers due to the biological similarity between pigs and humans.
A Fast Ice Prediction System (FIPS) was constructed and is the first regional land-fast sea-ice forecasting system for the Antarctic. FIPS had two components: (1) near-real-time information on the ice-covered area from MODIS and SAR imagery that revealed, tidal cracks, ridged and rafted ice regions; (2) a high-resolution 1-D thermodynamic snow and ice model (HIGHTSI) that was extended to perform a 2-D simulation on snow and ice evolution using atmospheric forcing from ECMWF: either using ERA-Interim reanalysis (in hindcast mode) or HERS operational 10-day predictions (in forecast mode). A hindcast experiment for the 2015 season was in good agreement with field observations, with a mean bias of 0.14 ± 0.07 m and a correlation coefficient of 0.98 for modeled ice thickness. The errors are largely caused by a cold bias in the atmospheric forcing. The thick snow cover during the 2015 season led to modeled formation of extensive snow ice and superimposed ice. The first FIPS operational service was performed during the 2017/18 season. The system predicted a realistic ice thickness and onset of snow surface melt as well as the area of internal ice melt. The model results on the snow and ice properties were considered by the captain of R/V Xuelong when optimizing a low-risk route for on-ice transportation through fast ice to the coastal Zhongshan Station.
The effect of holly polyphenols (HP) on intestinal inflammation and microbiota composition was evaluated in a piglet model of lipopolysaccharide (LPS)-induced intestinal injury. A total of twenty-four piglets were used in a 2 × 2 factorial design including diet type and LPS challenge. After 16 d of feeding with a basal diet supplemented with or without 250 mg/kg HP, pigs were challenged with LPS (100 μg/kg body weight) or an equal volume of saline for 4 h, followed by analysis of disaccharidase activities, gene expression levels of several representative tight junction proteins and inflammatory mediators, the SCFA concentrations and microbiota composition in intestinal contents as well as proinflammatory cytokine levels in plasma. Our results indicated that HP enhanced intestinal disaccharidase activities and reduced plasma proinflammatory cytokines including TNF-α and IL-6 in LPS-challenged piglets. Moreover, HP up-regulated mRNA expression of intestinal tight junction proteins such as claudin-1 and occludin. In addition, bacterial 16S rRNA gene sequencing showed that HP altered hindgut microbiota composition by enriching Prevotella and enhancing SCFA production following LPS challenge. These results collectively suggest that HP is capable of alleviating LPS-triggered intestinal injury by improving intestinal disaccharidase activities, barrier function and SCFA production, while reducing intestinal inflammation.
A high power laser system was used to drive the ignition of inertial confinement fusion (ICF), of which the high energy, the uniform focal spot, the accurate laser waveform, and the synchronization between the laser beams are key parameters. To accomplish this, global laser characteristics control should be assured, which was the main purpose of the injection laser system. In this paper, the key technological progress involved in the improvement of the performance of the injection laser of SG-II is reported, including frequency domain control, time domain control, near-field spatial shaping, pre-amplifier technology, and the optical parametric chirped pulse amplification pump source.