We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This meta-analysis assesses the relationship between vitamin D supplementation and incidence of major adverse cardiovascular events (MACEs). Pubmed, Web of science, Ovid, Cochrane Library and Clinical Trials were used to systematically search from their inception until July 2024. Hazard ratios (HR) and 95% confidence intervals (95%CI) were employed to assess the association between vitamin D supplementation and MACEs. This analysis included 5 randomized controlled trials (RCTs). Pooled results showed no significant difference in the incidence of MACEs (HR: 0.96; p=0.77), expanded MACEs (HR: 0.96; p=0.77) between the vitamin D intervention group and the control group. Further, the vitamin D intervention group had a lower incidence of myocardial infarction (MI), but the difference was not statistically significant (HR: 0.88, 95%CI: 0.77-1.01; p=0.061); nevertheless, vitamin D supplementation had no effect on the reduced incidence of stroke (p=0.675) or cardiovascular death (p=0.422). Among males (p=0.109) and females (p=0.468), vitamin D supplementation had no effect on the reduced incidence of MACEs. For participants with a body mass index (BMI)<25 kg/m2, the difference was not statistically significant (p=0.782); notably, the vitamin D intervention group had a lower incidence of MACEs for those with BMI≥25 kg/m2 (HR: 0.91, 95%CI: 0.83-1.00; p=0.055). Vitamin D supplementation did not significantly contribute to the risk reduction of MACEs, stroke and cardiovascular death in the general population, but may be helpful for MI. Notably, effect of vitamin D supplementation for MACEs was influenced by BMI. Overweight/obese people should be advised to take vitamin D to reduce the incidence of MACEs.
Unmanned surface vehicles (USVs) frequently encounter inadequate energy levels while navigating to their destinations, which complicates their successful berthing in intricate harbor environments. A bacterial foraging optimization algorithm (BFO) is proposed that takes energy consumption into account and incorporates multiple constraints (MC-BFO). The energy consumption model is redefined for wind environments, enhancing the sensitivity of USVs to wind conditions. Additionally, a reward function is integrated into the algorithm, and the fitness function is reconstructed to improve the goal orientation of the USV. This approach enables the USV to maintain a reasonable path length while pursuing low energy consumption, resulting in more practical navigation. Constraining the USV’s sailing posture for smoother paths and restricting the USV’s heading and speed near the berthage facilitate safe berthing. Finally, three distinct experimental environments are established to compare the paths generated by MC-BFO, BFO, and genetic algorithm under both downwind and upwind conditions, ensuring consistency in relevant parameters. Data on sailing posture, energy consumption, and path length are collected, generalized, and analyzed. The results indicate that MC-BFO effectively reduces energy consumption while maintaining an acceptable path length, resulting in smoother and more coherent paths compared to traditional segmented planning. In conclusion, this method significantly enhances the quality of the berthing path.
This paper presents a general approach to synthesizing closed-loop robots for machining and manufacturing of complex quadric surfaces, such as toruses, helicoids, and helical tubes. The proposed approach begins by employing finite screw theory to describe the motion sets generated by prismatic, rotational, and helical joints. Subsequently, generatrices and generating lines are put forward and combined for type synthesis of serial kinematic limbs capable of generating single-DoF translations along spatial curves and two-DoF translations on complex quadric surfaces. Following this manner, the two-DoF translational motion patterns on these complex quadric surfaces are algebraically defined and expressed as finite screw sets. Type synthesis of close-loop robots having the newly defined motion patterns can thus be carried out based upon analytical computations of finite screws. As application of the presented approach, closed-loop robots for machining toruses are synthesized, resulting in four-DoF and five-DoF standard and derived limbs together with their corresponding assembly conditions. Additionally, brief descriptions of robots for machining helicoids and helical tubes are provided, along with a comprehensive list of all the feasible limbs for these kinds of robots. The robots synthesized in this paper have promised applications in machining and manufacturing of spatial curves and surfaces, enabling precise control of machining trajectories ensured by mechanism structures and achieving high precision with low cost.
Pterotheca Salter, 1853 is an unusual but readily identifiable bellerophontoid gastropod that occurs in the Upper Ordovician to the Llandovery of the lower Silurian in many parts of North America and Europe. Recently, a large collection of Pterotheca was obtained for the first time from the Xiushan Formation of middle Telychian (Llandovery) age in the Hunan Province of South China. This is also the first record of the genus in the low-latitude peri-Gondwanan region. On the basis of the collection, two new species of Pterotheca—P. yongshunensis and P. xiushanensis—were identified and are described herein. The morphologic analysis suggests that close relatives of these new species may be Pterotheca species from the Telychian of Scotland. The new species show continuous variations of marginal apex to submarginal apex, implying that one of the Pterotheca species may be ancestral to the Devonian Aspidotheca Spriesterbach, 1919. The Pterotheca species from South China possibly lived a slowly crawling life on a soft substrate, feeding on algae and/or detritus, and were adapted to a shallow-water setting with substantial terrigenous input. Given that all the known Silurian Pterotheca species occurred in siliciclastic settings, most of which represent sea-level fall and lowstand periods, we demonstrate that geographic isolation and enhanced ocean circulation during the early Silurian regression facilitated the speciation of Pterotheca globally, and the connection of a sea pathway during the Rhuddanian transgression after the end-Ordovician glaciation could have led to the primary dispersal of Silurian Pterotheca.
Immunological castration can be an alternative to traditional surgical castration. The active immunization against GnRH or kisspeptin has a castrating effect. To date, the fusion protein vaccine of combination with GnRH and kisspeptin have not been studied. Thus, the present study will develop a GnRH6-kisspeptin vaccine by genetic engineering method and investigate its immunocastration effect in male rats. Twenty 20-day-old male rats were randomly divided into two groups: the control group (n=10) and the immunization group (n=10). The initial immunization took place at week 0 followed by three booster doses administered intervals. The control group received an equivalent dose of white oil adjuvant. Orbital blood samples were collected at various time points following the initial immunization, at 0, 2, 4, 6, 8, 10 and 12 weeks, respectively. The entire left testis was weighed and its volume measured at week 12. Samples from the right testis were obtained for histological analysis. Serum levels of GnRH and kisspeptin antibodies, as well as testosterone levels were determined using ELISA. The results showed that the serum levels of GnRH and kisspeptin antibody titres of the immunized rats were significantly higher compared to the control group (P<0.05). Additionally, the testosterone concentration was effectively reduced following the intensified immunization. The testes of the immunized group exhibited a reduction in size and a significant decrease in the number of spermatogonia in the testicular tissue compared to the control group (P<0.05). These data indicate that the recombinant GnRH6-kisspeptin protein effectively induced immunological castration in rats.
Major depressive disorder (MDD) is a heterogeneous condition characterized by significant intersubject variability in clinical presentations. Recent neuroimaging studies have indicated that MDD involves altered brain connectivity across widespread regions. However, the variability in abnormal connectivity among MDD patients remains understudied.
Methods
Utilizing a large, multi-site dataset comprising 1,276 patients with MDD and 1,104 matched healthy controls, this study aimed to investigate the intersubject variability of structural covariance (IVSC) and functional connectivity (IVFC) in MDD.
Results
Patients with MDD demonstrated higher IVSC in the precuneus and lingual gyrus, but lower IVSC in the medial frontal gyrus, calcarine, cuneus, and cerebellum anterior lobe. Conversely, they exhibited an overall increase in IVFC across almost the entire brain, including the middle frontal gyrus, anterior cingulate cortex, hippocampus, insula, striatum, and precuneus. Correlation and mediation analyses revealed that abnormal IVSC was positively correlated with gray matter atrophy and mediated the relationship between abnormal IVFC and gray matter atrophy. As the disease progressed, IVFC increased in the left striatum, insula, right lingual gyrus, posterior cingulate, and left calcarine. Pharmacotherapy significantly reduced IVFC in the right insula, superior temporal gyrus, and inferior parietal lobule. Furthermore, we found significant but distinct correlations between abnormal IVSC and IVFC and the distribution of neurotransmitter receptors, suggesting potential molecular underpinnings. Further analysis confirmed that abnormal patterns of IVSC and IVFC were reproducible and MDD specificity.
Conclusions
These results elucidate the heterogeneity of abnormal connectivity in MDD, underscoring the importance of addressing this heterogeneity in future research.
The betatron radiation source features a micrometer-scale source size, a femtosecond-scale pulse duration, milliradian-level divergence angles and a broad spectrum exceeding tens of keV. It is conducive to the high-contrast imaging of minute structures and for investigating interdisciplinary ultrafast processes. In this study, we present a betatron X-ray source derived from a high-charge, high-energy electron beam through a laser wakefield accelerator driven by the 1 PW/0.1 Hz laser system at the Shanghai Superintense Ultrafast Laser Facility (SULF). The critical energy of the betatron X-ray source is 22 ± 5 keV. The maximum X-ray flux reaches up to 4 × 109 photons for each shot in the spectral range of 5–30 keV. Correspondingly, the experiment demonstrates a peak brightness of 1.0 × 1023 photons·s−1·mm−2·mrad−2·0.1%BW−1, comparable to those demonstrated by third-generation synchrotron light sources. In addition, the imaging capability of the betatron X-ray source is validated. This study lays the foundation for future imaging applications.
Diagnostic classification models (DCMs) have seen wide applications in educational and psychological measurement, especially in formative assessment. DCMs in the presence of testlets have been studied in recent literature. A key ingredient in the statistical modeling and analysis of testlet-based DCMs is the superposition of two latent structures, the attribute profile and the testlet effect. This paper extends the standard testlet DINA (T-DINA) model to accommodate the potential correlation between the two latent structures. Model identifiability is studied and a set of sufficient conditions are proposed. As a byproduct, the identifiability of the standard T-DINA is also established. The proposed model is applied to a dataset from the 2015 Programme for International Student Assessment. Comparisons are made with DINA and T-DINA, showing that there is substantial improvement in terms of the goodness of fit. Simulations are conducted to assess the performance of the new method under various settings.
This paper proposes a cooperative midcourse guidance law with target changing and topology switching for multiple interceptors intercepting targets in the case of target loss and communication topology switching. Firstly, a three-dimensional guidance model is established and a cooperative trajectory shaping guidance law is given. Secondly, the average position consistency protocol of virtual interception points is designed for communication topology switching, and the convergence of the average position of virtual interception points under communication topology switching is proved by Lyapunov stability theory. Then, in the case of the target changing, the target handover law and the handover phase guidance law are designed to ensure the acceleration smoothing, at last, the whole cooperative midcourse guidance law is given based on the combination of the above guidance laws. Finally, numerical simulation results show the effectiveness and the superiority of the proposed cooperative midcourse guidance law.
Nypa fruticans Wurmb is both a relic plant and a true mangrove. In China, wild populations are distributed only on Hainan Island and face significant challenges in regeneration from seedlings. This study explored the underlying causes of recruitment limitation by examining seed morphological traits from three distinct populations (Haikou, Wenchang and Wanning) and analysing seed germination and seedling growth characteristics under varying conditions. The key findings are as follows: fruiting and seed-setting rates for N. fruticans were notably low, standing at only 21 and 40%, respectively. The Wanning population exhibited significantly higher rates compared to the other two populations. Under natural conditions, the germination and seedling emergence rates were also modest, at 36.58 and 22.99%, respectively. The germination and emergence rates of the Wanning population were significantly greater than those of the Haikou and Wenchang populations. Meanwhile, seeds from a single population did not differ in germination rates among three in situ N. fruticans habitats, but seedling emergence rates differed significantly. Optimal conditions for seed germination involved a light intensity of 60%, a salinity of 5‰ and a flooding time of 8 h/day. In natural settings, these three environmental factors fall short of the ideal conditions. The study underscores that light, salinity and flooding are primary factors contributing to the limitations in N. fruticans seedling recruitment. In addition to advocating increased investment in scientific research and technology to address seed source issues, we recommend heightened efforts in habitat restoration, in situ conservation and the optimization of relocation and field return strategies to bolster N. fruticans populations.
In this study, a novel kinematic modeling method of parallel mechanism is proposed. It can obtain position and posture space simultaneously in a single model. Compared with the traditional method only based on inverse kinematics, the novel method can significantly improve computational performance. The original evaluation metric $\mathfrak{R}$ is proposed to evaluate the performance of the two modeling methods. Three groups of experiments with different calculation times are carried out for the classical PPU-3RUS parallel mechanism, and the new RS-3UPRU parallel mechanism after the effectiveness and wide applicability of the novel modeling method is proved. The calculation time and output rate are recorded, respectively, and then the respective $\mathfrak{R}$ values are obtained by weighting. The results show that the novel modeling method has better performance.
We prove interior boundedness and Hölder continuity for the weak solutions of nonlocal double phase equations in the Heisenberg group $\mathbb{H}^n$. This solves a problem raised by Palatucci and Piccinini et al. in 2022 and 2023 for the nonlinear integro-differential problems in Heisenberg setting. Our proof of the a priori estimates bases on De Giorgi–Nash–Moser theory, where the important ingredients are Caccioppoli-type inequality and Logarithmic estimate. To achieve this goal, we establish a new and crucial Sobolev–Poincaré type inequality in local domain, which may be of independent interest and potential applications.
In response to the complex and challenging task of long-distance inspection of small-diameter and variable-diameter mine holes, this paper presents a design for an adaptive small-sized mine hole robot. First, focusing on the environment of small-diameter mine holes, the paper analyzes the robot’s functions and overall structural framework. A two-wheeled wall-pressing robot with good mobility, arranged in a straight line, is designed. Furthermore, an adaptive variable-diameter method is devised, which involves constructing an adaptive variable-diameter model and proposing a control method based on position and force estimators, enabling the robot to perceive external forces. Lastly, to verify the feasibility of the structural design and adaptive variable-diameter method, performance tests and analyses are conducted on the robot’s mobility and adaptive variable-diameter capabilities. Experimental results demonstrate that the robot can move within small-diameter mine holes at any inclination angle, with a maximum horizontal crawling speed of 3.96 m/min. By employing the adaptive variable-diameter method, the robot can smoothly navigate convex platform obstacles and slope obstacles in mine holes with diameters ranging from 70 mm to 100 mm, achieving the function of adaptive variable-diameter within 2 s. Thus, it can meet the requirements of moving inside mine holes under complex conditions such as steep slopes and small and variable diameters.
The material removal rate (MRR) serves as a crucial indicator in the chemical mechanical polishing (CMP) process of semiconductor wafers. Currently, the mainstream method to ascertain the MRR through offline measurements proves time inefficient and struggles to represent process variability accurately. An efficient MRR prediction model based on stacking ensemble learning that integrates models with disparate architectures was proposed in this study. First, the processing signals collected during wafer polishing, as available in the PHM2016 dataset, were analyzed and preprocessed to extract statistical and neighbor domain features. Subsequently, Pearson correlation coefficient analysis (PCCA) and principal component analysis (PCA) were employed to fuse the extracted features. Ultimately, random forest (RF), light gradient boosting machine (LightGBM), and backpropagation neural network (BPNN) with hyperparameters optimized by the Bayesian Optimization Algorithm were integrated to establish an MRR prediction model based on stacking ensemble learning. The developed model was verified on the PHM2016 benchmark test set, and a Mean Square Error (MSE) of 7.72 and a coefficient of determination (R2) of 95.82% were achieved. This indicates that the stacking ensemble learning based model, integrated with base models of disparate architectures, offers considerable potential for real-time MRR prediction in the CMP process of semiconductor wafers.
Skeletal muscle is of great importance for human activity and quality of life, as its loss contributes greatly to immobilisation, especially for aged individuals. An increased dietary intake of antioxidant vitamins may be beneficial for muscle loss because of ageing. However, the quantitative relationship between total antioxidant capacity (TAC) of antioxidant vitamins and muscle mass is undetermined. Totally, 4009 participants from the National Health and Nutrition Examination Survey (NHANES) were included. Multivariate linear regression analysis was performed with demographic, lifestyle and dietary intake adjustment factors. The dose saturation effect was also determined by a saturation effect analysis. Subgroup analysis was performed for age and sex. In the fully adjusted model, per unit increase of dietary TAC was associated with an increase of 0·018 g/kg appendicular lean mass (95 % CI 0·007, 0·029), 0·014 g/kg trunk lean mass (95 % CI 0·004, 0·024) and 0·035 g/kg total lean mass (95 % CI 0·014, 0·055). TAC was associated with a decrease of 0·004 kg/kg total percent fat (95 % CI −0·006, −0·002), 0·005 kg/kg trunk percent fat (95 % CI −0·007, −0·002) and 0·003 kg/m2 BMI (95 % CI −0·006, −0·001) at the same time. Subgroup analysis indicated that women and adults < 50 years may experience the most significant association between TAC and skeletal muscle mass. We revealed a positive correlation between TAC and lean body mass and a negative association between TAC and body fat and BMI. Saturation values were found among people aged 40–59 years. Age and sex mediate these associations.
Folate metabolism is involved in the development and progression of various cancers. We investigated the association of single nucleotide polymorphisms (SNP) in folate-metabolising genes and their interactions with serum folate concentrations with overall survival (OS) and liver cancer-specific survival (LCSS) of newly diagnosed hepatocellular carcinoma (HCC) patients. We detected the genotypes of six SNP in three genes related to folate metabolism: methylenetetrahydrofolate reductase (MTHFR), 5-methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR) and 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR). Cox proportional hazard models were used to calculate multivariable-adjusted hazard ratios (HR) and 95 % CI. This analysis included 970 HCC patients with genotypes of six SNP, and 864 of them had serum folate measurements. During a median follow-up of 722 d, 393 deaths occurred, with 360 attributed to HCC. In the fully-adjusted models, the MTRR rs1801394 polymorphism was significantly associated with OS in additive (per G allele: HR = 0·84, 95 % CI: 0·71, 0·99), co-dominant (AG v. AA: HR = 0·77; 95 % CI: 0·62, 0·96) and dominant (AG + GG v. AA: HR = 0·78; 95 % CI: 0·63, 0·96) models. Carrying increasing numbers of protective alleles was linked to better LCSS (HR10–12 v. 2–6 = 0·70; 95 % CI: 0·49, 1·00) and OS (HR10–12 v. 2–6 = 0·67; 95 % CI: 0·47, 0·95). Furthermore, we observed significant interactions on both multiplicative and additive scales between serum folate levels and MTRR rs1801394 polymorphism. Carrying the variant G allele of the MTRR rs1801394 is associated with better HCC prognosis and may enhance the favourable association between higher serum folate levels and improved survival among HCC patients.
The Indo-Pacific Warm Pool (IPWP) significantly influences the global hydrological cycle through its impact on atmospheric-oceanic circulation. However, gaining a comprehensive understanding of the hydrologic climate dynamics within the IPWP and its broader effects on the global climate have been hindered by spatial and temporal limitations in paleoclimate records on orbital timescales. In this study, we reconstructed precipitation records (approximated from δ18Osw-ivc) over the past 450 kyr, based on planktonic foraminiferal Mg/Ca and δ18O data obtained from International Ocean Discovery Program Site U1486 in the western tropical Pacific. The δ18Osw-ivc record revealed a generally consistent pattern with precession variations over the past 450 kyr, closely corresponding to changes in boreal summer insolation at the equator. The δ18Osw-ivc record displayed an anti-phased relationship with Chinese speleothem δ18O records on the precession band, with lower precipitation in the western tropical Pacific and higher precipitation in the East Asia summer monsoon region during periods of high Northern Hemisphere summer insolation. This anti-phased correlation primarily resulted from the north-south migration of the Intertropical Convergence Zone (ITCZ), influenced by the interhemispheric insolation contrast. By considering additional δ18Osw-ivc records from various locations within the IPWP region, we identified synchronous precipitation changes within the IPWP on the precession band. The synchronization of precipitation on both margins of the ITCZ’s seasonal range and differences between central and marginal regions of the ITCZ within the IPWP revealed the expansion and contraction of the ITCZ on precession band.
Understanding the yield attributes of rice crops grown at super high-yielding sites is useful for identifying how to achieve super high yield in rice. In this study, field experiments were conducted in 2021 and 2022 to compare grain yield and yield attributes of ten high-yielding hybrid rice varieties between Xingyi (a super high-yielding site) and Hengyang (a site with typical yields). Results showed that Xingyi produced an average grain yield of 13.4 t ha−1 in 2021 and 14.0 t ha−1 in 2022, which were, respectively, 20% and 44% higher than those at Hengyang. Higher panicles per m2 and higher grain weight were responsible for the higher grain yield at Xingyi compared to Hengyang. The higher values of panicles per m2 and grain weight at Xingyi compared to Hengyang were due to greater source capacity resulting from improved pre-heading biomass production. This study suggests that simultaneously increasing panicle number and grain weight through improving pre-heading biomass production is a potential way to achieve super high yield in rice.
Pebrine disease, caused by Nosema bombycis (Nb) infection in silkworms, is a severe and long-standing disease that threatens sericulture. As parasitic pathogens, a complex relationship exists between microsporidia and their hosts at the mitochondrial level. Previous studies have found that the translocator protein (TSPO) is involved in various biological functions, such as membrane potential regulation, mitochondrial autophagy, immune responses, calcium ion channel regulation, and cell apoptosis. In the present study, we found that TSPO expression in silkworms (BmTSPO) was upregulated following Nb infection, leading to an increase in cytoplasmic calcium, adenosine triphosphate, and reactive oxygen species levels. Knockdown and overexpression of BmTSPO resulted in the promotion and inhibition of Nb proliferation, respectively. We also demonstrated that the overexpression of BmTSPO promotes host cell apoptosis and significantly increases the expression of genes involved in the immune deficiency and Janus kinase-signal transducer and the activator of the transcription pathways. These findings suggest that BmTSPO activates the innate immune signalling pathway in silkworms to regulate Nb proliferation. Targeting TSPO represents a promising approach for the development of new treatments for microsporidian infections.
In order to gain a better understanding of clay and Fe (oxyhydr)oxide minerals formed during pedogenesis of basalts in tropical monsoonal Hainan (southern China), a basalt-derived lateritic soil at Nanyang, Hainan, was investigated comprehensively. The results show that the lateritic regolith consists uniformly of kaolinite and Fe (oxyhydr)oxide minerals, with trace gibbsite only in the AE horizon. Abundant dioctahedral smectite in the basalt bedrock formed due to primary hydrothermal alteration, and transformed to kaolinite rapidly in the highly weathering saprolite horizon. The ‘crystallinity’ of kaolinite is notably low and its Hinckley index fluctuates along the soil profile, resulting from intense ferrolysis due to fluctuations between wet/dry climate conditions. From the base to the top of the profile, maghemite shows a decreasing trend, whereas magnetite, hematite, and goethite exhibit a slightly increasing trend, indicating that maghemite formed as an initial product of basalt weathering. Formation of Fe (oxyhydr)oxide species in basalt-derived soil is mainly controlled by local environmental conditions such as soil moisture, redox, and acidic conditions; thus, iron mineral-based paleoclimatic proxies could not be used for subtropical to tropical soils. The highly weathered saprolite has a similar δ56Fe value (+0.06‰) to that (+0.07‰) of the parent rock, while the AE to middle E horizons have greater δ56Fe values of +0.12‰ to +0.19‰. Fe isotopic signatures correlate positively with the Fe mass transfer coefficient (R2=0.77, n=6, ρ<0.05), indicating repetitive weathering and relative accumulation of isotopically heavier Fe in the upper soil horizons, which occurred by reductive dissolution of organic matter under oxic conditions, as reflected by the greater U/Th.