We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Enlist E3® soybean is resistant to 2,4-D, glyphosate, and glufosinate, allowing postemergence applications of these herbicides sequentially or as tank mixes. The objectives of this experiment were to evaluate the effect of postemergence herbicide application timing and sequence with or without a preemergence application of micro-encapsulated acetochlor on waterhemp and common lambsquarters control, soybean yield, and economic returns. Field experiments were conducted in Rosemount and Franklin, Minnesota, in 2021 and 2022. Site, herbicide application timing, and sequence influenced weed control, yield, and profitability. In Rosemount, preemergence followed by (fb) two-pass postemergence programs, including 2,4-D + glyphosate applied at mid-postemergence with or without S-metolachlor, resulted in ≥95% waterhemp control at 28 d after late postemergence application. In Franklin, where weed density was lower, two-pass postemergence programs, regardless of preemergence application that included at least one application of 2,4-D + glyphosate (with or without S-metolachlor), provided ≥97% control of waterhemp and common lambsquarters at 28 d after late postemergence. The level of control was comparable to that of a preemergence herbicide fb a mid-postemergence application of 2,4-D + glyphosate + S-metolachlor at that site. In Rosemount, including acetochlor as the preemergence herbicide in the preemergence fb postemergence programs improved soybean yield by 32% and partial returns by US$384.50 ha−1 compared to postemergence herbicides–only programs. In contrast, the preemergence application did not affect yield or profitability in Franklin. The highest soybean yield (2,925.7 kg ha−1) in Rosemount resulted after glufosinate was applied early postemergence fb 2,4-D + glyphosate applied mid-postemergence. This yield was comparable to that of glufosinate applied early postemergence fb 2,4-D + glyphosate + S-metolachlor applied mid-postemergence and the two-pass glufosinate (early postemergence fb mid-postemergence) program, highlighting the importance of early season weed control. In Franklin, 2,4-D + glyphosate + S-metolachlor (applied mid-postemergence) fb glufosinate (applied late postemergence) provided a yield that was similar to the aforementioned programs at that site.
This chapter discusses the political economy facets of the relationship between the Indian state and the unlikely rollout of a mega-scale financial architecture known as India Stack. How did a state historically inadequate at providing public goods at scale roll out a postindustrial project of mega-proportions in record time? What are the distributional outcomes and the social meanings that arise from such an undertaking? The chapter shows that the materiality and legitimacy of India Stack rests upon the historical continuations of, or, in some cases, departures from, collective understandings in society and business about the role of the state. The chapter explores the calculations, coercions, and creativity of the India Stack infrastructure. The state’s infrastructural gaze has been central to the endeavor of the fintech infrastructure that offers both continuity and departure from the way the Indian state has functioned historically.
We provide an assessment of the Infinity Two fusion pilot plant (FPP) baseline plasma physics design. Infinity Two is a four-field period, aspect ratio $A = 10$, quasi-isodynamic stellarator with improved confinement appealing to a max-$J$ approach, elevated plasma density and high magnetic fields ($ \langle B\rangle = 9$ T). Here $J$ denotes the second adiabatic invariant. At the envisioned operating point ($800$ MW deuterium-tritium (DT) fusion), the configuration has robust magnetic surfaces based on magnetohydrodynamic (MHD) equilibrium calculations and is stable to both local and global MHD instabilities. The configuration has excellent confinement properties with small neoclassical transport and low bootstrap current ($|I_{bootstrap}| \sim 2$ kA). Calculations of collisional alpha-particle confinement in a DT FPP scenario show small energy losses to the first wall (${\lt}1.5 \,\%$) and stable energetic particle/Alfvén eigenmodes at high ion density. Low turbulent transport is produced using a combination of density profile control consistent with pellet fueling and reduced stiffness to turbulent transport via three-dimensional shaping. Transport simulations with the T3D-GX-SFINCS code suite with self-consistent turbulent and neoclassical transport predict that the DT fusion power$P_{{fus}}=800$ MW operating point is attainable with high fusion gain ($Q=40$) at volume-averaged electron densities $n_e\approx 2 \times 10^{20}$ m$^{-3}$, below the Sudo density limit. Additional transport calculations show that an ignited ($Q=\infty$) solution is available at slightly higher density ($2.2 \times 10^{20}$ m$^{-3}$) with $P_{{fus}}=1.5$ GW. The magnetic configuration is defined by a magnetic coil set with sufficient room for an island divertor, shielding and blanket solutions with tritium breeding ratios (TBR) above unity. An optimistic estimate for the gas-cooled solid breeder designed helium-cooled pebble bed is TBR $\sim 1.3$. Infinity Two satisfies the physics requirements of a stellarator fusion pilot plant.
In this work, we present a detailed assessment of fusion-born alpha-particle confinement, their wall loads and stability of Alfvén eigenmodes driven by these energetic particles in the Infinity Two Fusion Pilot Plant baseline plasma design, a four-field-period quasi-isodynamic stellarator to operate in deuterium–tritium fusion conditions. Using the Monte Carlo codes, SIMPLE, ASCOT5 and KORC-T, we study the collisionless and collisional dynamics of guiding-centre and full-orbit alpha-particles in the core plasma. We find that core energy losses to the wall are less than 4 %. Our simulations shows that peak power loads on the wall of this configuration are approximately 2.5 MW m-$^2$ and are spatially localised, toroidally and poloidaly, in the vicinity of x-points of the magnetic island chain $n/m = 4/5$ outside the plasma volume. Also, an exploratory analysis using various simplified walls shows that shaping and distance of the wall from the plasma volume can help reduce peak power loads. Our stability assessment of Alfvén eigenmodes using the STELLGAP and FAR3d codes shows the absence of unstable modes driven by alpha-particles in Infinity Two due to the relatively low alpha-particle beta at the envisioned 800 MW operating scenario.
The magnetohydrodynamic (MHD) equilibrium and stability properties of the Infinity Two fusion pilot plant baseline plasma physics design are presented. The configuration is a four-field period, aspect ratio $A = 10$ quasi-isodynamic stellarator optimised for excellent confinement at elevated density and high magnetic field $B = 9\,T$. Magnetic surfaces exist in the plasma core in vacuum and retain good equilibrium surface integrity from vacuum to an operational $\beta = 1.6 \,\%$, the ratio of the volume average of the plasma and magnetic pressures, corresponding to $800\ \textrm{MW}$ deuterium–tritium fusion operation. Neoclassical calculations show that a self-consistent bootstrap current of the order of ${\sim} 1\ \textrm{kA}$ slightly increases the rotational transform profile by less than 0.001. The configuration has a magnetic well across its entire radius. From vacuum to the operating point, the configuration exhibits good ballooning stability characteristics, exhibits good Mercier stability across most of its minor radius and it is stable against global low-n MHD instabilities up to $\beta = 3.2\,\%$.
Information regarding the prevalence and distribution of herbicide-resistant waterhemp [Amaranthus tuberculatus (Moq.) Sauer] in Minnesota is limited. Whole-plant bioassays were conducted in the greenhouse on 90 A. tuberculatus populations collected from 47 counties in Minnesota. Eight postemergence herbicides, 2,4-D, atrazine, dicamba, fomesafen, glufosinate, glyphosate, imazamox, and mesotrione, were applied at 1× and 3× the labeled doses. Based on their responses, populations were classified into highly resistant (≥40 % survival at 3× the labeled dose), moderately resistant (<40% survival at 3× the labeled dose but ≥40% survival at 1× the labeled dose), less sensitive (10% to 39% survival at 1× the labeled dose), and susceptible (<10% survival at 1× the labeled dose) categories. All 90 populations were resistant to imazamox, while 89% were resistant to glyphosate. Atrazine, fomesafen, and mesotrione resistance was observed in 47%, 31%, and 22% of all populations, respectively. Ten percent of the populations were resistant to 2,4-D, and 2 of 90 populations exhibited >40% survival following dicamba application at the labeled dose. No population was confirmed to be resistant to glufosinate. However, 22% of all populations were classified as less sensitive to glufosinate. Eighty-two populations were found to be multiple-herbicide resistant. Among these, 15 populations exhibited resistance to four different herbicide sites of action (SOAs); 7 and 4 populations were resistant to five and six SOAs, respectively. All six-way-resistant populations were from southwest Minnesota. Two populations, one from Lincoln County and the other from Lyon County, were resistant to 2,4-D, atrazine, dicamba, fomesafen, glyphosate, imazamox, and mesotrione, leaving only glufosinate as a postemergence control option for these populations in corn (Zea mays L.) and soybean [Glycine max (L.) Merr.]. Diversified management tactics, including nonchemical control measures along with herbicide applications from effective SOAs, should be implemented to slow down the evolution and spread of herbicide-resistant A. tuberculatus populations.
Attendance at university can result in social support network disruption. This can have a negative impact on the mental health of young people. Demand for mental health support continues to increase in universities, making identification of factors associated with poorer outcomes a priority. Although social functioning has a bi-directional relationship with mental health, its association with effectiveness of psychological treatments has yet to be explored.
Objectives
To explore whether students showing different trajectories of change in social function over the course of treatment differed in eventual treatment outcome.
Methods
Growth mixture models were estimated on a sample of 5221 students treated in routine mental health services. Different trajectories of change in self-rated impairment in social leisure activities and close relationships (Work and Social Adjustment Scale (WSAS) items 3 and 5) during the course of treatment were identified. Associations between trajectory classes and treatment outcomes were explored through multinomial regression.
Results
Five trajectory classes were identified for social leisure activity impairment (Figure 1), and three classes were identified for close relationship impairment (Figure 2). For both measures the majority of students remained mildly impaired (Class 1). Other trajectories included severe impairment with limited improvement (Class 2), severe impairment with delayed improvement (Class 3), and, in social leisure activities only, rapid improvement (Class 4), and deterioration (Class 5). There was an association between trajectories of improvement in social functioning over time and positive treatment outcomes. Trajectories of worsening or stable severe impairment were associated with negative treatment outcomes.
Image:
Image 2:
Conclusions
Changes in social functioning impairment are associated with psychological treatment outcomes in students, suggesting that these changes may be associated with treatment effectiveness or recovery experiences. Future research should look to establish whether a causal link exists to understand if additional benefit for students can be gained through integrating social support within psychological treatment.
The aviation industry’s efforts to reduce carbon emissions have driven the rapid development and scale-up of sustainable aviation fuels (SAFs). SAFs have the potential to significantly reduce CO2 lifecycle emissions by up to 80% in comparison to Jet A and other conventional fossil-derived jet fuels. For multiple logistical and practical reasons, it is preferable to ensure that SAFs are ‘essentially identical’ (also referred to as ‘drop-in SAF’) to conventional jet fuel in terms of their performance, durability and compatibility with existing hardware systems. Because the majority of SAFs are not identical (non-drop-in) to conventional jet fuel, they have not been approved for use in their neat (100%) form. Instead, these non-identical SAFs are named synthetic blend components (SBC) as they are blended with conventional fuels to different extents per ASTM D7566-23a. It should be noted that there are on-going efforts to develop non-drop in SAF specifications to broaden their proliferation and maximise the aviation industries’ ability to reduce CO2 lifecycle emissions. One very important area of focus is the compatibility of SAFs with engine and fuel system seals, specifically understanding the dynamics of elastomeric seals. To address this, a novel approach has been developed to measure seal dynamics in flowing fuel. This technique has been applied to study the dynamic seal behaviour of four industrially relevant elastomer seals commonly employed in aviation fuel systems. The study involved three test fuels: (i) conventional fossil-derived Jet A, neat hydroprocessed esters and fatty acids (HEFA) SAF, and neat alcohol to jet (ATJ) SAF. Notably, both HEFA and ATJ fuels contain 0% aromatics, in contrast to Jet A, which typically contains around 17% aromatics by volume. The novel fuel-elastomer test rig used in this study was designed to simulate a practical scenario in which fuel flows through the inner surface of a pre-loaded static O-ring. The results of these tests demonstrate that the behaviour of different nitrile elastomers is unique to their formulation, and in all cases, the behaviour in HEFA and ATJ SAF differs significantly from that in Jet A. However, new fuel approval tests may only list one type of elastomer for evaluation, for example the ‘Fit-for-Purpose’ test in ASTM D4054-22 Tier 2 lists one specific nitrile. The findings of this study highlight the complexities of fuel-elastomer interactions within nominally identical chemical families and emphasise the potential risks of assessing compatibility based on tests conducted with a single member of a chemical family.
Background: Duchenne muscular dystrophy (DMD) is caused by DMD gene mutations. Delandistrogene moxeparvovec is an investigational gene transfer therapy, developed to address the underlying cause of DMD. We report findings from Part 1 (52 weeks) of the two-part EMBARK trial (NCT05096221). Methods: Key inclusion criteria: Ambulatory patients aged ≥4-<8 years with a confirmed DMD mutation within exons 18–79 (inclusive); North Star Ambulatory Assessment (NSAA) score >16 and <29 at screening. Eligible patients were randomized 1:1 to intravenous delandistrogene moxeparvovec (1.33×1014 vg/kg) or placebo. The primary endpoint was change from baseline in NSAA total score to Week 52. Results: At Week 52 (n=125), the primary endpoint did not reach statistical significance, although there was a nominal difference in change from baseline in NSAA total score in the delandistrogene moxeparvovec (2.6, n=63) versus placebo groups (1.9, n=61). Key secondary endpoints (time to rise, micro-dystrophin expression, 10-meter walk/run) demonstrated treatment benefit in both age groups (4-5 and 6-7 years; p<0.05).There were no new safety signals, reinforcing the favorable and manageable safety profile observed to date. Conclusions: Based on the totality of functional assessments including the timed function tests, treatment with delandistrogene moxeparvovec indicates beneficial modification of disease trajectory.
This contribution focuses on the abatement with hydrogen of CO2 and non-CO2 emissions. It is agenda-setting in two respects. Firstly, it challenges the globally accepted hydrocarbon sustainable aviation fuel (SAF) pathway to sustainability and recommends that our industry accelerates along the hydrogen pathway to ‘green’ aviation. Secondly, it reports a philosophical and analytical investigation of appropriate accuracy on abatement strategies for nitrogen oxides and contrails of large hydrogen airliners. For the second contribution, a comparison is made of nitrogen oxide emissions and contrail avoidance options of two hydrogen airliners and a conventional airliner of similar passenger capacity. The hydrogen aircraft are representative of the first and second innovation waves where the main difference is the weight of the hydrogen tanks. Flights of 1000, 2000, 4000 and 8000 nautical miles are explored. Cranfield’s state of the art simulators for propulsion system integration and gas turbine performance (Orion and Turbomatch) were used for this. There are two primary contributions to knowledge. The first is a new set of questions to be asked of SAF and hydrogen decarbonising features. The second is the quantification of the benefits from hydrogen on non-CO2 emissions. For the second generation of long-range hydrogen-fuelled aircraft having gas turbine propulsion, lighter tanks (needing less thrust and lower gas temperatures) are anticipated to reduce NOx emissions by over 20%; in the case of contrails, the preliminary findings indicate that regardless of the fuel, contrails could largely be avoided with fuel-burn penalties of a few per cent. Mitigating action is only needed for a small fraction of flights. For conventional aircraft this penalty results in more CO2, while for hydrogen aircraft the additional emission is water vapour. The conclusion is that our research community should continue to consider hydrogen as the key ‘greening’ option for aviation, notwithstanding the very significant costs of transition.
Dates from recently excavated Gangetic site of Sakas in Bihar, India, place it at ca.1800–1100 BC. The ceramic and lithic chronologies have been interpreted as Early Farming, Transitional and Chalcolithic/Developed Farming in date. However, depending on where in the Ganges Plains is studied, the time frame of Early, Developed and Advanced Farming periods varies widely, from 7th millennium to 2nd millennium BC and beyond, making the chronological framing of absolute dates within a regional scheme highly complex. In this paper we report the new radiocarbon results from Sakas and note how while these are critical for cementing the absolute dating of the site, until such time as a more stable periodization linked not only to relative and absolute dates but also human lifeways within the different zones of the Ganges plains is created, there remains difficulties in understanding how Sakas and other sites of similar date fit into the changing social, cultural and economic systems in this region.
Tight focusing with very small f-numbers is necessary to achieve the highest at-focus irradiances. However, tight focusing imposes strong demands on precise target positioning in-focus to achieve the highest on-target irradiance. We describe several near-infrared, visible, ultraviolet and soft and hard X-ray diagnostics employed in a ∼1022 W/cm2 laser–plasma experiment. We used nearly 10 J total energy femtosecond laser pulses focused into an approximately 1.3-μm focal spot on 5–20 μm thick stainless-steel targets. We discuss the applicability of these diagnostics to determine the best in-focus target position with approximately 5 μm accuracy (i.e., around half of the short Rayleigh length) and show that several diagnostics (in particular, 3$\omega$ reflection and on-axis hard X-rays) can ensure this accuracy. We demonstrated target positioning within several micrometers from the focus, ensuring over 80% of the ideal peak laser intensity on-target. Our approach is relatively fast (it requires 10–20 laser shots) and does not rely on the coincidence of low-power and high-power focal planes.
This investigation was carried out to study the effect of different concentrations of citric acid and glycine, which are common in freshwaters, on the kinetics of the adsorption of Hg by kaolinite under various pH conditions. The data indicate that Hg adsorption by kaolinite at different concentrations of citric acid and glycine obeyed multiple first order kinetics. In the absence of the organic acids, the rate constants of the initial fast process were 46 to 75 times faster than those of the slow adsorption process in the pH range of 4.00 to 8.00. Citric acid had a significant retarding effect on both the fast and slow adsorption process at pHs of 6.0 and 8.0. It had a significant promoting effect on the fast and slow adsorption process at pH 4.00. Glycine had a pronounced enhancing effect on the rate of Hg adsorption by kaolinite during the fast process. The rise in pH of the system further increased the effect of glycine on Hg adsorption. The magnitude of the retarding/promoting effect upon the rate of Hg adsorption was evidently dependent upon the pH, structure and functionality of organic acids, and molar ratio of the organic acid/Hg. The data obtained suggest that low-molecular-weight organic acids merit close attention in studying the kinetics and mechanisms of the binding of Hg by sediment particulates and the subsequent food chain contamination.
The herbicides that inhibit very-long-chain fatty acid (VLCFA) elongases are primarily used for residual weed control in corn, barley, oat, sorghum, soybean, sugarcane, certain vegetable crops, and wheat production fields in the United States. They act primarily by inhibiting shoot development of susceptible species, preventing weed emergence and growth. The objectives of this review were to summarize 1) the chemical family of VLCFA-inhibiting herbicides and their use in the United States, 2) the VLCFA biosynthesis in plants and their site of action, 3) VLCFA-inhibitor resistant weeds and their mechanism of resistance, and 4) the future of VLCFA-inhibiting herbicides. After their reclassification as Group 15 herbicides to include shoot growth-inhibiting herbicides (Group 8), the VLCFA-inhibiting herbicides are currently represented by eight chemical families (benzofurans, thiocarbamates, α-chloroacetamides, α-oxyacetamides, azolyl-carboxamides, isoxazolines, α-thioacetamides, and oxiranes). On average, VLCFA-inhibiting herbicides are applied once a year to both corn and soybean crops in the United States with acetochlor and S-metolachlor being the most used VLCFA-inhibiting herbicides in corn and soybean production, respectively. The site of action of Group 15 herbicides results from inhibition of the VLCFA synthase, which is encoded by several fatty acid elongase (FAE1)-like genes in VLCFA elongase complex in an endoplasmic reticulum. The VLCFA synthase is a condensing enzyme, and relies on a conserved, reactive cysteinyl sulfur in its active site that performs a nucleophilic attack on either the natural substrate (fatty acyl-CoA) or the herbicide. As of August 2023, 13 weed species have been documented to be resistant to VLCFA inhibitors, including 11 monocot weeds and two dicot weeds (Palmer amaranth and waterhemp). The isoxazolines (pyroxasulfone and fenoxasulfone) are the most recently (2014) discovered VLCFA-inhibiting herbicides. Although the intensity of VLCFA-inhibitor-directed discovery efforts has decreased over the past decade, this biochemical pathway remains a viable mechanistic target for the discovery of herbicide premixes and a valuable component of them.
Depression and anxiety are the leading contributors to the global burden of disease among young people, accounting for over a third (34.8%) of years lived with disability. Yet there is limited evidence for interventions that prevent adolescent depression and anxiety in low- and middle-income countries (LMICs), where 90% of adolescents live. This article introduces the ‘Improving Adolescent mentaL health by reducing the Impact of poVErty (ALIVE)’ study, its conceptual framework, objectives, methods and expected outcomes. The aim of the ALIVE study is to develop and pilot-test an intervention that combines poverty reduction with strengthening self-regulation to prevent depression and anxiety among adolescents living in urban poverty in Colombia, Nepal and South Africa.
Methods
This aim will be achieved by addressing four objectives: (1) develop a conceptual framework that identifies the causal mechanisms linking poverty, self-regulation and depression and anxiety; (2) develop a multi-component selective prevention intervention targeting self-regulation and poverty among adolescents at high risk of developing depression or anxiety; (3) adapt and validate instruments to measure incidence of depression and anxiety, mediators and implementation parameters of the prevention intervention; and (4) undertake a four-arm pilot cluster randomised controlled trial to assess the feasibility, acceptability and cost of the selective prevention intervention in the three study sites.
Results
The contributions of this study include the active engagement and participation of adolescents in the research process; a focus on the causal mechanisms of the intervention; building an evidence base for prevention interventions in LMICs; and the use of an interdisciplinary approach.
Conclusions
By developing and evaluating an intervention that addresses multidimensional poverty and self-regulation, ALIVE can make contributions to evidence on the integration of mental health into broader development policy and practice.
We identify a set of essential recent advances in climate change research with high policy relevance, across natural and social sciences: (1) looming inevitability and implications of overshooting the 1.5°C warming limit, (2) urgent need for a rapid and managed fossil fuel phase-out, (3) challenges for scaling carbon dioxide removal, (4) uncertainties regarding the future contribution of natural carbon sinks, (5) intertwinedness of the crises of biodiversity loss and climate change, (6) compound events, (7) mountain glacier loss, (8) human immobility in the face of climate risks, (9) adaptation justice, and (10) just transitions in food systems.
Technical summary
The Intergovernmental Panel on Climate Change Assessment Reports provides the scientific foundation for international climate negotiations and constitutes an unmatched resource for researchers. However, the assessment cycles take multiple years. As a contribution to cross- and interdisciplinary understanding of climate change across diverse research communities, we have streamlined an annual process to identify and synthesize significant research advances. We collected input from experts on various fields using an online questionnaire and prioritized a set of 10 key research insights with high policy relevance. This year, we focus on: (1) the looming overshoot of the 1.5°C warming limit, (2) the urgency of fossil fuel phase-out, (3) challenges to scale-up carbon dioxide removal, (4) uncertainties regarding future natural carbon sinks, (5) the need for joint governance of biodiversity loss and climate change, (6) advances in understanding compound events, (7) accelerated mountain glacier loss, (8) human immobility amidst climate risks, (9) adaptation justice, and (10) just transitions in food systems. We present a succinct account of these insights, reflect on their policy implications, and offer an integrated set of policy-relevant messages. This science synthesis and science communication effort is also the basis for a policy report contributing to elevate climate science every year in time for the United Nations Climate Change Conference.
Social media summary
We highlight recent and policy-relevant advances in climate change research – with input from more than 200 experts.
Twenty-nine exotic common bean germplasms and three elite cultivars were examined for phenotypic diversity in two bean-producing environments (Kanpur and Shimla) across three winter seasons and one rainy season. The estimate of genetic variability parameters revealed that the exotic bean germplasm has enough diversity for all the evaluated features. The highest genotypic and phenotypic coefficients of variation were found in seed yield, followed by 100-seed weight, pods per plant and pod length. Furthermore, seed yield was the most heritable and genetically advanced quantitative feature, followed by 100-seed weight, pod length and pods per plant. According to a trait association study, the days to maturity of phenological traits have a strong positive correlation with the days to initial flowering and the days to 50% flowering. Pods per plant and seeds per pod most strongly influence increased grain yield. The first two principal components accounted for 63.3% of the variation and demonstrated significant diversity among exotic bean lines for the traits studied, according to the principal component analysis. According to the hierarchical clustering analysis, 29 accessions and three cultivars were divided into three groups. Cluster I contains early flowering and maturing accessions, while cluster III contains high pods per plant and an increased grain yield of germplasms. The fundamental source of phenological fluctuations in both environmental circumstances is temperature. This study found four genetically divergent and stable performance accessions, including EC932021, EC932189 (earliness), and EC931452, EC931971 (high grain yield), which may aid in the establishment of a bean breeding programme.
We compare detailed observations of multiple H2O maser transitions around the red supergiant star VY CMa with models to constrain the physical conditions in the complex outflows. The temperature profile is consistent with a variable mass loss rate but the masers are mostly concentrated in dense clumps. High-excitation lines trace localised outflows near the star.