We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A generalised multiparameter model for linear modal stability and sensitivity analysis is developed. The stability and sensitivity equations are derived from a generalised vector-form governing equation comprised of multiple dimensionless parameters that represent different physical forces affecting the system’s stability. By introducing adjoint variables and constructing the Lagrangian identity, a differential relationship between the eigenvalue of the perturbation mode and dimensionless parameters is determined and defined as the global sensitivity gradient. It provides the constraint that must be satisfied for changes in different dimensionless parameters along the isoeigenvalue curve, which aids in the fast computation of the neutral curve. Moreover, the global sensitivity gradient can directly and intuitively evaluate the competitive relationship among the influences of various parameters on system instability. Based on the global sensitivity gradient, an optimal stability control strategy for transitioning from an unstable state to a stable state is discussed. Additionally, the relative sensitivity function is also introduced to investigate the influence of relative parameter variations on instability. To demonstrate the effectiveness of this method, three applications are presented: two-dimensional flow around a circular cylinder with a single dimensionless parameter Re; three-dimensional axisymmetric magnetohydrodynamic (MHD) flow around a sphere with two parameters Re and $N$; and two-dimensional MHD mixed convection with three parameters Re, ${\textit{Gr}}$ and $\textit{Ha}$.
When an oblate droplet translates through a viscous fluid under linear shear, it experiences a lateral lift force whose direction and magnitude are influenced by the Reynolds number, the droplet’s viscosity and its aspect ratio. Using a recently developed sharp interface method, we perform three-dimensional direct numerical simulations to explore the evolution of lift forces on oblate droplets across a broad range of these parameters. Our findings reveal that in the low-but-finite Reynolds number regime, the Saffman mechanism consistently governs the lift force. The lift increases with the droplet’s viscosity, aligning with the analytical solution derived by Legendre & Magnaudet (Phys. Fluids, vol. 9, 1997, p. 3572), and also rises with the droplet’s aspect ratio. We propose a semi-analytical correlation to predict this lift force. In the moderate- to high-Reynolds-number regime, distinct behaviours emerge: the $L\hbox{-}$ and $S\hbox{-}$mechanisms, arising from the vorticity contained in the upstream shear flow and the vorticity produced at the droplet surface, dominate for weakly and highly viscous droplets, respectively. Both mechanisms generate counter-rotating streamwise vortices of opposite signs, leading to observed lift reversals with increasing droplet viscosity. Detailed force decomposition based on vorticity moments indicates that in the $L\hbox{-}$mechanism-dominated regime for weakly to moderately viscous droplets, the streamwise vorticity-induced lift approximates the total lift. Conversely, in the $S\hbox{-}$mechanism-dominated regime, for moderately to highly viscous droplets, the streamwise vorticity-induced lift constitutes only a portion of the total lift, with the asymmetric advection of azimuthal vorticity at the droplet interface contributing additional positive lift to counterbalance the $S\hbox{-}$mechanism’s effects. These insights bridge the understanding between inviscid bubbles and rigid particles, enhancing our comprehension of the lift force experienced by droplets in different flow regimes.
When a droplet impacts onto a superheated liquid pool, vapour generation and drainage within the gas cushion play a crucial role in postponing or even preventing contact between the droplet and the pool surface. Through direct numerical simulations, we closely examine the transient dynamics of vapour flow confined within the thin film, with a particular focus on the minimum thickness of this film under a range of impact conditions. Our numerical findings manifest the significant influence of evaporation on the vertical motion of the liquid–vapour interface, revealing how the minimum film thickness evolves in response to variations in impact velocity and degree of superheat. In our numerical simulations, we have identified two distinct evolution laws for the minimum film thickness, corresponding to moderate and high superheat regimes, respectively. These regimes are differentiated by the dominance of evaporation effects within the vapour film during the early falling stage. Subsequently, we establish scaling relations to characterize these regimes by carefully balancing inertial, pressure and evaporation effects within the thin vapour film. Furthermore, we observe that the vapour pressure eventually reaches equilibrium with the rapid increase in capillary pressure at the spreading front, thereby controlling the minimum thickness of the vapour layer in both moderate and high superheat regimes. We derive self-similar solutions based on this equilibrium, and the predicted minimum film thickness aligns remarkably well with our numerical results. This provides compelling evidence that evaporation alone is insufficient to prevent droplet–pool coalescence.
Observations of the intracluster medium (ICM) in the outskirts of galaxy clusters reveal shocks associated with gas accretion from the cosmic web. Previous work based on non-radiative cosmological hydrodynamical simulations have defined the shock radius, $r_{\text{shock}}$, using the ICM entropy, $K \propto T/{n_\mathrm{e}}^{2/3}$, where T and $n_{\text{e}}$ are the ICM temperature and electron density, respectively; the $r_{\text{shock}}$ is identified with either the radius at which K is a maximum or at which its logarithmic slope is a minimum. We investigate the relationship between $r_{\text{shock}}$, which is driven by gravitational hydrodynamics and shocks, and the splashback radius, $r_{\text{splash}}$, which is driven by the gravitational dynamics of cluster stars and dark matter and is measured from their mass profile. Using 324 clusters from The Three Hundred project of cosmological galaxy formation simulations, we quantify statistically how $r_{\text{shock}}$ relates to $r_{\text{splash}}$. Depending on our definition, we find that the median $r_{\text{shock}} \simeq 1.38 r_{\text{splash}} (2.58 R_{200})$ when K reaches its maximum and $r_{\text{shock}} \simeq 1.91 r_{\text{splash}} (3.54 R_{200})$ when its logarithmic slope is a minimum; the best-fit linear relation increases as $r_{\text{shock}} \propto 0.65 r_{\text{splash}}$. We find that $r_{\text{shock}}/R_{200}$ and $r_{\text{splash}}/R_{200}$ anti-correlate with virial mass, $M_{200}$, and recent mass accretion history, and $r_{\text{shock}}/r_{\text{splash}}$ tends to be larger for clusters with higher recent accretion rates. We discuss prospects for measuring $r_{\text{shock}}$ observationally and how the relationship between $r_{\text{shock}}$ and $r_{\text{splash}}$ can be used to improve constraints from radio, X-ray, and thermal Sunyaev-Zeldovich surveys that target the interface between the cosmic web and clusters.
Asymptotic expansions of the maximum likelihood estimator (MLE) and weighted likelihood estimator (WLE) of an examinee’s ability are derived while item parameter estimators are treated as covariates measured with error. The asymptotic formulae present the amount of bias of the ability estimators due to the uncertainty of item parameter estimators. A numerical example is presented to illustrate how to apply the formulae to evaluate the impact of uncertainty about item parameters on ability estimation and the appropriateness of estimating ability using the regular MLE or WLE method.
This study is dedicated to achieving efficient active noise control in a supersonic underexpanded planar jet, utilizing control parameters informed by resolvent analysis. The baseline supersonic underexpanded jet exhibits complex wave structures and substantial high-amplitude noise radiations. To perform the active control, unsteady blowing and suction are applied along the nozzle inner wall close to the exit. Employing both standard and acoustic resolvent analyses, a suitable frequency and spanwise wavenumber range for the blowing and suction is identified. Within this range, the control forcing can be significantly amplified in the near field, effectively altering the original sound-producing energetic structure while minimizing far-field amplification to prevent excessive noise. A series of large-eddy simulations are further conducted to validate the control efficiency, demonstrating an over 10 dB reduction in upstream-propagated screech noise. It is identified that the present unsteady control proves more effective than steady control at the same momentum coefficient. The controlled jet flow indicates that the shock structures become more stable, and the stronger the streamwise amplification of the forcing, the more likely it is to modify the mean flow characteristics, which is beneficial for reducing far-field noise radiation. Spectral proper orthogonal decomposition analysis of the controlled flow confirms that the control redistributes energy to higher forcing frequencies and suppresses large-scale antisymmetric and symmetric modes related to screech and its harmonics. The findings of this study highlight the potential of resolvent-guided control techniques in reducing noise in supersonic underexpanded jets and provide a detailed understanding of the inherent mechanisms for effective noise reduction through active control strategies.
Prior research on status has focused primarily on the cognitive perspective, exploring the effects of status and offering a limited understanding of the impact of positive status change and its emotional mechanisms. This study draws upon the two-facet model of pride to examine how positive status change influences the behaviors of new status holders. Specifically, we propose that when status differentiation is low, positive status change enhances new status holders' prosocial behavior through their authentic pride, while in cases of high status differentiation, it increases their self-interested behavior through their hubristic pride. To test our hypotheses, we conducted a series of studies, including a laboratory experiment, a scenario experiment, and a time-lagged multilevel and multisource field study. Our multilevel analyses of the data provided strong support for our hypotheses. Our findings shed light on when and why positive status change triggers different behaviors among new status holders, offering important insights into the emotional mechanisms that underlie the effects of status change.
Investigations are conducted on the effect of wall proximity on the flow around a cylinder under an axial magnetic field, using the electrical potential probe technology to measure the velocity of liquid metal flow. The study focused on the impact of the inlet velocity of the fluid, the magnetic field and wall proximity on the characteristics of velocity fields, particularly on the vortex-shedding mode. Based on different magnitudes of the magnetic field and the distance from the cylinder to the duct wall, three types of vortex-shedding modes are identified, (I) shear layer oscillation state, (II) quasi-two-dimensional vortex-shedding states and (III) transition of the magnetohydrodynamic to hydrodynamic Kármán street. The transitions between these modes are analysed in detail. The experimental results show that the weak wall-proximity effect leads to the formation of the Kármán vortex street, while a reverse Kármán vortex street and secondary vortices emerge under a strong wall-proximity effect. It is noticed that the Kelvin–Helmholtz instability drives vortex shedding under regime I, leading to an increase in the Strouhal number (St) with stronger magnetic fields. Additionally, under a strong axial magnetic field, the wall-proximity effect (‘Shercliff layer effect’) promotes the instability of shear layers on both sides of the cylinder. These unique coupling effects are validated by variations in modal coefficients and energy proportions under different vortex-shedding regimes using the proper orthogonal decomposition method.
Firefighters are frequently exposed to traumatic events and stressful environments and are at particularly high risk of depressive symptoms.
Aims:
The present study aimed to examine the impact of a combined internet-delivered cognitive behavioral therapy (iCBT) and attention bias modification (ABM) intervention to reduce depressive symptoms in firefighters.
Method:
The study was a randomized controlled trial carried out in Kunming, China, and involved the recruitment of 138 active firefighters as participants. The intervention lasted for an 8-week duration, during which participants participated in ABM exercises on alternating days and concurrently underwent eight modules of iCBT courses delivered through a smartphone application. Baseline and post-intervention assessments were conducted to evaluate the effects of the intervention.
Results and Discussion:
Results indicated that the combined iCBT and ABM intervention was significantly effective in reducing symptoms of depression compared with the no intervention control group (U=1644, p<0.001, Wilcoxon r=0.280). No significant change was observed in attention bias post-intervention (U=2460, p=0.737, Wilcoxon r=0.039), while a significant increase was observed in attention-bias variability (U=3172, p<0.001, Wilcoxon r=–0.287). This study provides evidence for the effectiveness of the combined iCBT and ABM intervention in reducing depressive symptoms among firefighters. This study provides conceptual support and preliminary evidence for the effectiveness of the combined iCBT and ABM intervention in reducing depressive symptoms among firefighters.
This study conducts a numerical investigation into the three-dimensional film boiling of liquid under the influence of external magnetic fields. The numerical method incorporates a sharp phase-change model based on the volume-of-fluid approach to track the liquid–vapour interface. Additionally, a consistent and conservative scheme is employed to calculate the induced current densities and electromagnetic forces. We investigate the magnetohydrodynamic effects on film boiling, particularly examining the pattern transition of the vapour bubble and the evolution of heat transfer characteristics, exposed to either a vertical or horizontal magnetic field. In single-mode scenarios, film boiling under a vertical magnetic field displays an isotropic flow structure, forming a columnar vapour jet at higher magnetic field intensities. In contrast, horizontal magnetic fields result in anisotropic flow, creating a two-dimensional vapour sheet as the magnetic strength increases. In multi-mode scenarios, the patterns observed in single-mode film boiling persist, with the interaction of vapour bubbles introducing additional complexity to the magnetohydrodynamic flow. More importantly, our comprehensive analysis reveals how and why distinct boiling effects are generated by various orientations of magnetic fields, which induce directional electromagnetic forces to suppress flow vortices within the cross-sectional plane.
High-pressure fluid transport in nanoporous media such as shale formations requires further understanding because conventional continuum approaches become inadequate due to their ultralow permeability and complexity of transport mechanisms. We propose a species-based approach for modelling two partially miscible, multicomponent fluids in nanoporous media – one that does not rely on conventional bulk fluid transport frameworks but on species movement. We develop a numerical model for species transport of partially miscible, non-ideal fluid mixtures using the chemical potential gradient as the driving force. The model considers the binary friction concept to include the friction between fluid molecules as well as between fluid molecules and pore walls, and incorporates the key multicomponent transport mechanisms – Knudsen, viscous and molecular diffusion. Under single-phase conditions, the system under consideration is quantified by introducing multicomponent Sherwood number (Sh), Péclet number (Pe) and fluid–solid friction modulus (φ). Despite the complexity of fluid transport in nanopores, the steady-state single-phase transport results reveal the contribution of diffusion in nanopores, where all parameters collapse on a set of master curves for the multicomponent Sh with a dependence on multicomponent Pe and φ. Unsteady state, two-phase transport modelling of the codiffusion process shows that light and intermediate alkanes are produced much higher than heavy alkanes when the vapour phase appears. We demonstrate that the pressure gradient is also crucial in promoting CO2 and alkane mixing during counterdiffusion processes. These results stress the need for a paradigm shift from classical bulk flow modelling to species-based transport modelling in nanoporous media.
Until now the research has mainly examined visible abusive supervision, like aggression and violence, but it’s unclear how subtle forms, such as gaslighting, impact victims. Gaslighting, an emotionally and psychologically manipulative form of abuse, is an increasingly prevalent phenomenon in contemporary times. Based on the conservation of resources theory, we examined how supervisory gaslighting affects job embeddedness directly and indirectly through work motivation. We also explored how coworker support moderates the gaslighting-work motivation link. Structural equation modeling was used to assess the two-wave time-lagged data from 337 Chinese hotel employees. The results show the negative direct and indirect effects of gaslighting, and coworker support moderates the negative link between gaslighting and work motivation. Hotel organizations should exercise caution when hiring supervisors to prevent gaslighting, which can undermine employee motivation and job embeddedness. This study also recommends raising awareness among employees to speak out against supervisors’ gaslighting behavior.
In a horizontally heated melting system, where a solid substance is subject to melting by a warmer liquid beneath, the presence of solute in the liquid introduces a complex interplay between temperature and concentration dynamics. Employing a recently developed sharp interface method (Xue et al., J. Comput. Phys., vol. 491, 2023), we conduct direct numerical simulations to investigate the transient behaviour of the system across a broad range of Rayleigh numbers and solute concentrations. Our observations reveal distinct flow regimes: at low concentrations, the system resembles a temperature-driven melting problem, characterized by vortex rolls beneath the melting interface. As the solute concentration increases, a stably stratified layer emerges beneath the interface, leading to the transition from thermal convection to penetrative convection, which resembles those flow characteristics observed in the double-diffusive convection. This shift results from the competition between the stabilizing effect induced by solute concentration gradient and the destabilizing effect caused by temperature gradient. Otherwise in the diffusion regime, characterized by very high solute concentrations, the flow becomes static due to the complete suppression of convection by the stably stratified layer. This regime further exhibits two distinct patterns: ‘melting’ and ‘dissolution’. Beyond characterizing diverse flow patterns, our study conducts a quantitative analysis, examining heat/mass transfer, melting rates, and the evolution of temperature and concentration at the interface. These insights contribute to a better understanding of the intricate interplay between temperature and solute concentration during phase change, with implications for accurately estimating melting rates in binary fluid systems.
Sediments within accretionary complexes, preserving key information on crust growth history of Central Asian Orogenic Belt, did not get enough attention previously. Here, we conduct comprehensive geochemical study on the turbidites from the North Tianshan Accretionary Complex (NTAC) in the Chinese West Tianshan orogen, which is a good example of sediments derived from juvenile materials. The turbidites, composed of sandstone, siltstone, and argillaceous siliceous rocks, are mainly Carboniferous. All the investigated samples have relatively low Chemical Index of Alteration values (35–63) and Plagioclase Index of Alteration values (34–68), indicating relatively weak weathering before erosion and deposition. The sandstone and siltstone, and slate samples display high Index of Compositional Variability values of 0.89–1.50 and 0.89–0.93, suggesting a relatively immature source. The sandstones and siltstones were mainly derived from intermediate igneous rocks, and the slates from felsic igneous rocks, formed in oceanic/continental arc settings. The investigated samples roughly display high positive εNd(t) values (mainly at +5.5 to +7.9, except one spot at +0.8), with corresponding Nd model ages at 672 Ma–522 Ma (except one at ∼1.1 Ga). Combined with the previous studies, we suggest that the turbidites in the NTAC were mainly derived from intermediate to felsic igneous rocks with juvenile arc signature, and thus the northern Chinese West Tianshan is a typical site with significant Phanerozoic crust growth.
Extracellular polymeric substances (EPS) are high molecular weight polymers that microorganisms secrete into their extracellular environment. EPS serves as the carrier of the structural integrity of microbial biofilms, determining the physicochemical properties and the functional complexity of biofilms. EPS creates an ideal environment for interfacial reactions and nutrient trapping around microbial cells, while also acting as a buffer zone against environmental stresses. EPS in soil can contribute to soil health through its own properties such as adhesion, hygroscopicity and complexing ability. Here, we first introduce the concept, components, properties and controlled factors of EPS in the soil environment, and outline current advances in extraction methods and characterization techniques for soil EPS. EPS form a dynamic biophysical-chemical interface between microbes and the soil matrix. We explore the role of EPS in the colonization and survival of microorganisms, aggregation and weathering of soil minerals, and cross-linking with soil organic matter. We then summarize the soil ecological functions of microbial EPS: 1) promoting aggregate formation and stabilization; 2) enhancing water retention and holding capacity; 3) mediating nutrient storage and trapping; and 4) regulating contaminant sequestration and transformation. Finally, we propose several future research interests for microbial EPS in soil, thereby calling for more attention and research on microbial EPS and its functions in soil ecosystems, and exploring their potential applications in the development of environment-friendly agriculture.
The tension distribution problem of cable-driven parallel robots is inevitable in real-time control. Currently, iterative algorithms or geometric algorithms are commonly used to solve this problem. Iterative algorithms are difficult to improve in real-time performance, and the tension obtained by geometric algorithms may not be continuous. In this paper, a novel tension distribution method for four-cable, 3-DOF cable-driven parallel robots is proposed based on the wave equation. The tension calculated by this method is continuous and differentiable, without the need for iterative computation or geometric centroid calculations, thus exhibiting good real-time performance. Furthermore, the feasibility and rationality of this algorithm are theoretically proven. Finally, the real-time performance and continuity of cable tension are analyzed through a specific numerical example.
Language is one of the most celebrated hallmarks of human cognition. With the continuous improvement of medical technology, functional MRI (fMRI) has been used in aphasia. Although many related studies have been carried out, most studies have not extensively focused on brain regions with reduced activation in aphasic patients. The aim of this study was to identify brain regions normally activated in healthy controls but with reduced activation in aphasic patients during fMRI language tasks.
Methods:
We collected all previous task-state fMRI studies of secondary aphasia. The brain regions showed normal activation in healthy controls and reduced activation in aphasic patients were conducted activation likelihood estimation (ALE) meta-analysis to obtain the brain regions with consistently reduced activation in aphasic patients.
Results:
The ALE meta-analysis revealed that the left inferior frontal gyrus, left middle temporal gyrus, left superior temporal gyrus, left fusiform gyrus, left lentiform nucleus and the culmen of the cerebellum were the brain regions with reduced activation in aphasic patients.
Discussion:
These findings from the ALE meta-analysis have significant implications for understanding the language network and the potential for recovery of language functions in individuals with aphasia.