We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The lattice walks in the plane starting at the origin $\mathbf {0}$ with steps in $\{-1,0,1\}^{2}\setminus \{\mathbf {0}\}$ are called king walks. We investigate enumeration and divisibility for higher dimensional king walks confined to certain regions. Specifically, we establish an explicit formula for the number of $(r+s)$-dimensional king walks of length n ending at $(a_1,\ldots ,a_r,b_1,\ldots ,b_s)$ which never dip below $x_i=0$ for $i=1,\ldots ,r$. We also derive divisibility properties for the number of $(r+s)$-dimensional king walks of length p (an odd prime) through group actions.
The effect of Stokes number on turbulence modulation in particle-laden channel flow is investigated through four-way coupled point-particle direct numerical simulations, with the mass loading fixed at 0.6 and the friction Stokes number $St^+$ varying from 3 to 300. A full transition pathway is observed, from a drag-enhanced to a drag-reduced regime, eventually approaching the single-phase state as $St^+$ increases towards 300. A set of transport equations for the particle phase is derived analytically to characterise the interphase coupling, within the framework of the point-based statistical description of particle-laden turbulence. By virtue of this, two dominant mechanisms are identified and quantitatively characterised: a positive, particle-induced extra transport that decreases monotonically with increasing $St^+$, and a negative, particle-induced extra dissipation that varies non-monotonically with $St^+$. The coupling of these two mechanisms leads to a direct contribution of the particle phase to the shear stress balance, the turbulent kinetic energy budgets and the Reynolds stress budgets. Consequently, as $St^+$ increases, the self-sustaining cycle of near-wall turbulence transitions from being augmented to being suppressed and, eventually, returns to the single-phase state. This gives rise to an indirect effect, manifested as a non-monotonic modulation of Reynolds shear stress and turbulence production rate. Taken together, complex interplays between particle-modified turbulent transport, particle-induced extra transport and extra dissipation are analysed and summarised, providing a holistic physical picture composed of consistent interpretations of turbulence modulation induced by small heavy particles.
Both multifocal motor neuropathy (MMN) and chronic inflammatory demyelinating polyneuropathy (CIDP) are chronic progressive immune-mediated peripheral neuropathies without sensory loss. We aimed to explore the different features of ultrasonographic and electrophysiological changes among MMN, motor CIDP and typical CIDP patients.
Methods:
Nerve ultrasonographic studies were performed in 19 patients with MMN, 15 patients with motor CIDP and 117 patients with typical CIDP. Cross-sectional areas (CSAs) were measured on the bilateral median and ulnar nerves and brachial plexus. Nerve conduction studies (NCSs) were performed on the median and ulnar nerves.
Results:
In patients with MMN and typical CIDP, the percentage enlargement in the brachial plexus (MMN 45.7%, typical CIDP 78%) was similar to that in the arm (MMN 42.9%, typical CIDP 76.8%) and forearm (MMN 42.9%, typical CIDP 79.4%). However, in patients with motor CIDP, the percentage enlargement in the brachial plexus (74.1%) was more pronounced than in the arm (65.5%) and forearm (58.6%). The CMAPerb/CMAPaxilla in MMN was significantly higher than in motor CIDP (median nerve, 0.82 ± 0.28 for MMN and 0.60 ± 0.37 for motor CIDP, P = 0.017). The CSA decreased in the order of typical CIDP, motor predominant CIDP (MPred-CIDP), pure motor CIDP (PM-CIDP) and MMN. The motor nerve conduction velocity increased in the order of typical CIDP, MPred-CIDP, PM-CIDP and MMN. A total of 3/6 PM-CIDP and 3/3 MPred-CIDP patients responded to steroid treatment.
Conclusion:
Treatment response, nerve ultrasonography and NCS in MMN, PM-CIDP, MPred-CIDP and typical CIDP constitute a spectrum.
Mapping reviews (MRs) are crucial for identifying research gaps and enhancing evidence utilization. Despite their increasing use in health and social sciences, inconsistencies persist in both their conceptualization and reporting. This study aims to clarify the conceptual framework and gather reporting items from existing guidance and methodological studies. A comprehensive search was conducted across nine databases and 11 institutional websites, including documents up to January 2024. A total of 68 documents were included, addressing 24 MR terms and 55 definitions, with 39 documents discussing distinctions and overlaps among these terms. From the documents included, 28 reporting items were identified, covering all the steps of the process. Seven documents mentioned reporting on the title, four on the abstract, and 14 on the background. Ten methods-related items appeared in 56 documents, with the median number of documents supporting each item being 34 (interquartile range [IQR]: 27, 39). Four results-related items were mentioned in 18 documents (median: 14.5, IQR: 11.5, 16), and four discussion-related items appeared in 25 documents (median: 5.5, IQR: 3, 13). There was very little guidance about reporting conclusions, acknowledgments, author contributions, declarations of interest, and funding sources. This study proposes a draft 28-item reporting checklist for MRs and has identified terminologies and concepts used to describe MRs. These findings will first be used to inform a Delphi consensus process to develop reporting guidelines for MRs. Additionally, the checklist and definitions could be used to guide researchers in reporting high-quality MRs.
DNA barcoding approaches have been successfully applied for estimating diet composition. However, an accurate quantification in the diets of herbivores remains to be achieved. In the current study, we present a novel methodology that reveals the relationship between the actual proportions (by mass) of each herbage species in the diets and the relative proportions of the ITS2 gene sequences obtained from faecal samples to evaluate the diet composition of sheep in a meadow steppe. Nine common and 12 rare species of plants were employed for formulating 6 diets, along with the addition of feed supplements for improving the growth performance of sheep. Faecal samples were collected for DNA analysis over the period spanning days 7–12. A significant positive correlation (Spearman’s ρ = 0.389) was obtained between the actual proportions (by mass) of the herbage in the diet provided and the relative abundance of ITS2 sequences obtained from the faecal samples. A significant regression coefficient was found between the relative abundance of all common species and their respective herbage mass proportions. The accuracy of the relation equations, evaluated by utilizing the similarity coefficient, showed 84.69% similarity between the actual diet composition and the correct percentage. Taken together, the current study has provided empirical evidence for the accuracy and applicability of ITS2 as a DNA barcode for obtaining quantitative information about the diet composition of sheep grazing in species-rich grasslands.
A high-energy pulsed vacuum ultraviolet (VUV) solid-state laser at 177 nm with high peak power by the sixth harmonic of a neodymium-doped yttrium aluminum garnet (Nd:YAG) amplifier in a KBe2BO3F2 prism-coupled device was demonstrated. The ultraviolet (UV) pump laser is a 352 ps pulsed, spatial top-hat super-Gaussian beam at 355 nm. A high energy of a 7.12 mJ VUV laser at 177 nm is obtained with a pulse width of 255 ps, indicating a peak power of 28 MW, and the conversion efficiency is 9.42% from 355 to 177 nm. The measured results fitted well with the theoretical prediction. It is the highest pulse energy and highest peak power ever reported in the VUV range for any solid-state lasers. The high-energy, high-peak-power, and high-spatial-uniformity VUV laser is of great interest for ultra-fine machining and particle-size measurements using UV in-line Fraunhofer holography diagnostics.
Developing a model to describe the shock-accelerated cylindrical fluid layer with arbitrary Atwood numbers is essential for uncovering the effect of Atwood numbers on the perturbation growth. The recent model (J. Fluid Mech., vol. 969, 2023, p. A6) reveals several contributions to the instability evolution of a shock-accelerated cylindrical fluid layer but its applicability is limited to cases with an absolute value of Atwood numbers close to $1$, due to the employment of the thin-shell correction and interface coupling effect of the fluid layer in vacuum. By employing the linear stability analysis on a cylindrical fluid layer in which two interfaces separate three arbitrary-density fluids, the present work generalizes the thin-shell correction and interface coupling effect, and thus, extends the recent model to cases with arbitrary Atwood numbers. The accuracy of this extended model in describing the instability evolution of the shock-accelerated fluid layer before reshock is confirmed via direct numerical simulations. In the verification simulations, three fluid-layer configurations are considered, where the outer and intermediate fluids remain fixed and the density of the inner fluid is reduced. Moreover, the mechanisms underlying the effect of the Atwood number at the inner interface on the perturbation growth are mainly elucidated by employing the model to analyse each contribution. As the Atwood number decreases, the dominant contribution of the Richtmyer–Meshkov instability is enhanced due to the stronger waves reverberated inside the layer, leading to weakened perturbation growth at initial in-phase interfaces and enhanced perturbation growth at initial anti-phase interfaces.
This study aimed to investigate the effects of esketamine (Esk) combined with dexmedetomidine (Dex) on postoperative delirium (POD) and quality of recovery (QoR) in elderly patients undergoing thoracoscopic radical lung cancer surgery.
Methods
In this prospective, randomized, and controlled study, 172 elderly patients undergoing thoracoscopic radical lung cancer surgery were divided into two groups: the Esk + Dex group (n = 86) and the Dex group a (n = 86). The primary outcome was the incidence of POD within 7 days after surgery and the overall Quality of Recovery−15 (QoR − 15) scores within 3 days after surgery. Secondary outcomes included postoperative adverse reactions, extubation time, PACU stay, and hospitalization time. Serum levels of IL-6, IL-10, S100β protein, NSE, CD3+, CD4+, and CD8+ were detected from T0 to T5.
Results
Compared with the Dex group, the incidence of POD in the Esk + Dex group was significantly lower at 7 days after surgery (14.6% vs 30.9%; P = 0.013). The QoR − 15 score was significantly increased 3 days after surgery (P < 0.01). Levels of IL-6 and CD8+ were significantly decreased, and IL − 10 levels were significantly increased at T1-T2 (P < 0.05). At T1-T4, NSE levels were significantly decreased, while CD3+ and CD4+/CD8+ values were significantly increased (P < 0.01). At T1-T5, serum S100β protein concentration decreased significantly, and CD4+ value increased significantly (P < 0.01). The incidence of nausea/vomiting and hyperalgesia decreased significantly 48 hours after surgery (P < 0.01). The duration of extubation, PACU stay, and postoperative hospitalization were significantly shortened.
Conclusions
Esketamine combined with dexmedetomidine can significantly reduce the POD incidence and improve the QoR in patients undergoing thoracoscopic radical lung cancer surgery, which may be related to the improvement of cellular immune function.
In this paper, a capsule endoscopy system with a sensing function is proposed for medical devices. A single-arm spiral antenna is designed for data transmission and is combined with the voltage controlled oscillator to achieve sensing capabilities. The designed antenna operates at a 900 MHz industrial scientific medical band. By establishing a three-layer cylindrical model of the stomach, it was concluded that the antenna in the stomach has a high peak gain of −1.1 dBi. Additionally, the antenna achieved a −10 dB impedance bandwidth of 5%. The capsule endoscopy was experimentally measured in both actual stomach and simulated environments. The maximum working distance of the capsule endoscope was measured to be 6.8 m. Additionally, the proposed capsule endoscope was tested for its sensing function using solutions with different dielectric constants. Finally, it was confirmed through link analysis that it has good communication capabilities. The results and analysis confirm that the proposed capsule endoscope can be used for examining gastric diseases.
The efficacy of steady large-amplitude blowing/suction on instability and transition control for a hypersonic flat plate boundary layer with Mach number 5.86 is investigated systematically. The influence of the blowing/suction flux and amplitude on instability is examined through direct numerical simulation and resolvent analysis. When a relatively small flux is used, the two-dimensional instability critical frequency that distinguishes the promotion/suppression mode effect closely aligns with the synchronisation frequency. For the oblique wave, as the spanwise wavenumber increases, the suppression effects would become weaker and the mode suppression bandwidth diminishes/increases in general in the blowing/suction control. Increasing the blowing/suction flux can effectively broaden the frequency bandwidth of disturbance suppression. The influence of amplitude on disturbance suppression is weak in a scenario of constant flux. To gain a deeper insight into disturbance suppression mechanism, momentum potential theory (MPT) and kinetic energy budget analysis are further employed in analysing disturbance evolution with and without control. When the disturbance is suppressed, the blowing induces the transport of certain acoustic components along the compression wave out of the boundary layer, whereas the suction does not. The velocity fluctuations are derived from the momentum fluctuations of the MPT. Compared with the momentum fluctuations, the evolutions indicated by each component's velocity fluctuations greatly facilitate the investigations of the acoustic nature of the second mode. The rapid variation of disturbance amplitude near the blowing is caused by the oscillations of the acoustic component and phase speed differences between vortical and thermal components. Kinetic energy budget analysis is performed to address the non-parallel effect of the boundary layer introduced by blowing/suction, which tends to suppress disturbances near the blowing. Moreover, viscous effects leading to energy dissipation are identified to be stronger in regions where the boundary layer is rapidly thickening. Finally, it is demonstrated that a flat plate boundary layer transition triggered by a random disturbance can be delayed by a blowing/suction combination control. The resolvent analysis further demonstrates that disturbances with frequencies that dominate the early transition stage are dampened in the controlled base flow.
Southeast Asia's growing economic linkages with China have generated political opportunities and strategic concerns in equal measure. This study provides a fuller picture of Chinese investments in Southeast Asia for those seeking to understand its significance and impacts. From their carefully constructed dataset, Goh and Liu provide a regionwide, multi-sectoral analysis quantitative survey and analysis of key changes in Chinese investments in Southeast Asian economies over fifteen years, from 2005 to 2019. Additionally, they provide a qualitative assessment of the geopolitical significance of these trends and patterns. Thus, this study creates a baseline understanding of more recent Chinese investments in the region. In the near future, when a feasible data series can be collated for the years from 2020, it will also allow a sharper analysis of the effects of the COVID-19 pandemic on Chinese investments in the region.
In large-scale galaxy surveys, particularly deep ground-based photometric studies, galaxy blending was inevitable. Such blending posed a potential primary systematic uncertainty for upcoming surveys. Current deblenders predominantly depended on analytical modelling of galaxy profiles, facing limitations due to inflexible and imprecise models. We presented a novel approach, using a U-net structured transformer-based network for deblending astronomical images, which we term the CAT-deblender. It was trained using both RGB and the grz-band images, spanning two distinct data formats present in the Dark Energy Camera Legacy Survey (DECaLS) database, including galaxies with diverse morphologies in the training dataset. Our method necessitated only the approximate central coordinates of each target galaxy, sourced from galaxy detection, bypassing assumptions on neighbouring source counts. Post-deblending, our RGB images retained a high signal-to-noise peak, consistently showing superior structural similarity against ground truth. For multi-band images, the ellipticity of central galaxies and median reconstruction error for r-band consistently lie within $\pm$0.025 to $\pm$0.25, revealing minimal pixel residuals. In our comparison of deblending capabilities focused on flux recovery, our model showed a mere 1% error in magnitude recovery for quadruply blended galaxies, significantly outperforming SExtractor’s higher error rate of 4.8%. Furthermore, by cross-matching with the publicly accessible overlapping galaxy catalogs from the DECaLS database, we successfully deblended 433 overlapping galaxies. Moreover, we have demonstrated effective deblending of 63 733 blended galaxy images, randomly chosen from the DECaLS database.
The prevalence of non-suicidal self-injury (NSSI) among adolescents underscores the importance of understanding the complex factors that drive this behaviour. Framed within broader constructs of emotional regulation theories, alexithymia and peer victimisation are thought to interact to influence NSSI behaviours.
Aim
This research addresses whether alexithymia and peer victimisation serve as risk factors for NSSI and, if so, how these factors interact with each other.
Method
This quantitative study analysed data from 605 adolescents, using a range of validated self-report measures including the Toronto Alexithymia Scale. Statistical analyses including one-way analysis of variance, multiple regression and structural equation modelling were employed to scrutinise the relationships among the variables.
Results
Alexithymia and peer victimisation significantly predicted NSSI behaviours. Specifically, the ‘difficulty in identifying feelings’ subscale of alexithymia emerged as a noteworthy predictor of NSSI (P < 0.001). Peer victimisation mediated the relationship between alexithymia and NSSI, explaining approximately 24.50% of alexithymia's total effect on NSSI. In addition, age was a significant predictor of NSSI, but gender and education years were not (P > 0.05). These relationships were found to be invariant across genders.
Conclusions
This study enriches our understanding of the interplay between alexithymia, peer victimisation and NSSI, particularly within the Chinese context. Its findings have significant implications for a rethinking of alexithymia's theoretical construct and interventions targeting emotional literacy and peer dynamics among adolescents. Future research could benefit from a longitudinal design to establish causality.
This study presents a comprehensive analysis on the extreme positive and negative events of wall shear stress and heat flux fluctuations in compressible turbulent boundary layers (TBLs) solved by direct numerical simulations. To examine the compressibility effects, we focus on the extreme events in two representative cases, i.e. a supersonic TBL of Mach number $M=2$ and a hypersonic TBL of $M=8$, by scrutinizing the coherent structures and their correlated dynamics based on conditional analysis. As characterized by the spatial distribution of wall shear stress and heat flux, the extreme events are indicated to be closely related to the structural organization of wall streaks, in addition to the occurrence of the alternating positive and negative structures (APNSs) in the hypersonic TBL. These two types of coherent structures are strikingly different, namely the nature of wall streaks and APNSs are shown to be related to the solenoidal and dilatational fluid motions, respectively. Quantitative analysis using a volumetric conditional average is performed to identify and extract the coherent structures that directly account for the extreme events. It is found that in the supersonic TBL, the essential ingredients of the conditional field are hairpin-like vortices, whose combinations can induce wall streaks, whereas in the hypersonic TBL, the essential ingredients become hairpin-like vortices as well as near-wall APNSs. To quantify the momentum and energy transport mechanisms underlying the extreme events, we proposed a novel decomposition method for extreme skin friction and heat flux, based on the integral identities of conditionally averaged governing equations. Taking advantage of this decomposition method, the dominant transport mechanisms of the hairpin-like vortices and APNSs are revealed. Specifically, the momentum and energy transports undertaken by the hairpin-like vortices are attributed to multiple comparable mechanisms, whereas those by the APNSs are convection dominated. In that, the dominant transport mechanisms in extreme events between the supersonic and hypersonic TBLs are indicated to be totally different.
This first section provides an overview and analysis of the full Quantitative Report which follows.
Southeast Asia’s growing economic linkages with and dependence on China for investment have generated political opportunities and strategic concerns in equal measure. However, recent discussions have tended to focus on infrastructure projects, especially those associated with the Belt and Road Initiative (BRI). This narrow focus can be misleading, and an understanding of the fuller picture of Chinese investments in Southeast Asia is necessary for those seeking to understand its significance and impacts. The People’s Republic of China (PRC) is not a new player in this game, having had a longer history of providing investment and aid in this region, particularly in support of independence struggles and civil and regional conflicts during the Cold War. After 1990 and reflecting Beijing’s economic reform and internationalization strategy, Chinese investment in Southeast Asia picked up gradually across varied sectors. Prior to President Xi Jinping’s unveiling in 2013 of what has come to be called BRI, Southeast Asia had already seen a turning point in the growing significance of Chinese investments during the global financial crisis in 2008/9.
This report is part of a research project that examines China’s investment in Southeast Asia, aiming to provide a regionwide, multi-sectoral analysis that allows comparisons and facilitates policy calibration and focus. In this quantitative report, we present the baseline quantitative survey and analysis of key changes in Chinese investments in Southeast Asian economies over the most recent fifteen years, from 2005 to 2019, for which comparable data is available.
By “investment”, we refer to Chinese investment, project financing, and service provision in the region. The CGIT dataset that our report relies on captures the two key forms of Foreign Direct Investment (mergers and acquisitions, and greenfield investment), as well as other forms of cross-border investment flows associated with Chinese investments in Southeast Asia. Construction contracts, in particular, often accompany Chinese overseas investment and are a form of trade in services that can be even more significant than FDI.
1.1 Regionwide Trends
Foreign investments in Southeast Asia (SEA) originating from China grew twentyfold during this fifteen-year period. This trend is more marked when we define foreign investments as including both ownership acquisition of specific enterprises, and service provision (such as construction contracts).
A1. Selection of Datasets on Chinese Investments in Southeast Asia
This report surveys key changes in Chinese investments in SEA economies since the mid-2000s (following from the Chinese government’s 1999 “Going Global” strategy). To achieve this research objective, we examined various databases on Chinese overseas investments, including:
• China Global Investment Tracker (CGIT) database;
• ASEAN Statistical Yearbooks;
• Foreign direct investment (FDI) data compiled by the World Bank;
• FDI data compiled by the International Monetary Fund (IMF);
• FDI data compiled by the Asian Development Bank;
• Statistical Bulletin of China’s Outward FDI released by China’s Ministry of Commerce;
• Data on China’s outward direct investment released by China’s Bureau of Statistics;
• Global Chinese Official Finance Dataset, 2000–2014, Version 1.0; and
• China Global Energy Finance database.
We eventually decided to use the CGIT database as the primary data source for this project for three reasons. First, unlike other datasets on Chinese investment which are either too aggregated or too segmented, CGIT provides up-to-date data on Chinese investments in each SEA country by industrial sector over a reasonably long period, from 2005 to 2019 (as at the time when data analysis first commenced in early 2020). This allowed us to examine the industry-specific trends and patterns of Chinese investments in every SEA country over the past fifteen years and to compare the features of Chinese investments across SEA countries. Section A of this Appendix explains how we selected and classified industrial sectors for this project. Second, the CGIT database includes two broad types of Chinese investments—transactions involving Chinese acquisition of asset ownership, and Chinese provision of services, in SEA countries. These two classifications enabled us to further disaggregate the relative spread of types of investments across SEA countries and industrial sectors. Third, the CGIT database provides additional information about investors and other transaction parties, facilitating our identification of specific Chinese investments that were of significance or particular interest. The CGIT database is a public dataset compiled and published by the American Enterprise Institute and the Heritage Foundation in the United States.
However, it is important to note that the CGIT database only tracks “large” investments worth at least US$100 million.