We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A generalised multiparameter model for linear modal stability and sensitivity analysis is developed. The stability and sensitivity equations are derived from a generalised vector-form governing equation comprised of multiple dimensionless parameters that represent different physical forces affecting the system’s stability. By introducing adjoint variables and constructing the Lagrangian identity, a differential relationship between the eigenvalue of the perturbation mode and dimensionless parameters is determined and defined as the global sensitivity gradient. It provides the constraint that must be satisfied for changes in different dimensionless parameters along the isoeigenvalue curve, which aids in the fast computation of the neutral curve. Moreover, the global sensitivity gradient can directly and intuitively evaluate the competitive relationship among the influences of various parameters on system instability. Based on the global sensitivity gradient, an optimal stability control strategy for transitioning from an unstable state to a stable state is discussed. Additionally, the relative sensitivity function is also introduced to investigate the influence of relative parameter variations on instability. To demonstrate the effectiveness of this method, three applications are presented: two-dimensional flow around a circular cylinder with a single dimensionless parameter Re; three-dimensional axisymmetric magnetohydrodynamic (MHD) flow around a sphere with two parameters Re and $N$; and two-dimensional MHD mixed convection with three parameters Re, ${\textit{Gr}}$ and $\textit{Ha}$.
In this work, a compact active integrated antenna based on a highly compatible antenna-in-package (AiP) solution is proposed. It consists of two sections, namely, a cover plate integrated with an antenna and a package backplane that carries a GaN power amplifier (PA) die. The proposed AiP solution not only provides efficient interconnection between the antenna and the GaN PA die while providing physical shielding, but also provides impedance compensation for the die to improve the matching performance. Besides, a plated through hole array is designed inside the package backplane to significantly improve heat dissipation performance. The proposed AiP solution is compatible with radio frequency integrated circuit (RFIC) dies with different pin arrangements. Two prototypes are fabricated and measured for validation. The first prototype is the active integrated antenna based on the GaN PA, which shows an impedance bandwidth of 25.7–28.7 GHz, a peak gain of 31 dBi, and a dimension of 8 mm × 8 mm × 1.7 mm. Another prototype is based on a GaN front-end module (FEM) die integrating the PA and low noise amplifier, which demonstrates better EVM and ACPR than the conventional design with separate antenna and FEM.
It is generally accepted that the evolution of the deep-water surface gravity wave spectrum is governed by quartet resonant and quasi-resonant interactions. However, it has also been reported in both experimental and computational studies that non-resonant triad interactions can play a role, e.g. generation of bound waves. In this study, we investigate the effects of triad and quartet interactions on the spectral evolution, by numerically tracking the contributions from quadratic and cubic terms in the dynamical equation. In a finite time interval, we find that the contribution from triad interactions follows the trend of that from quartet resonances (with comparable magnitude) for most wavenumbers, except that it peaks at low wavenumbers with very low initial energy. This result reveals two effects of triad interactions. (1) The non-resonant triad interactions can be connected to form quartet resonant interactions (hence exhibiting the comparable trend), which is a reflection of the normal form transformation applied in wave turbulence theory of surface gravity waves. (2) The triad interactions can fill energy into the low-energy portion of the spectrum (low wavenumber part in this case) on a very fast time scale, with energy distributed in both bound and free modes at the same wavenumber. We further analyse the latter mechanism using a simple model with two initially active modes in the wavenumber domain. Analytical formulae describing the distribution of energy in free and bound modes are provided, along with numerical validations.
To summarise the characteristics and postoperative outcomes in paediatric patients with coronary sinus septal defect.
Method:
This retrospective study recruited paediatric patients diagnosed with coronary sinus septal defect from the Guangdong Cardiovascular Institute between 2011 and 2023. Clinical characteristics, echocardiographic parameters, surgical procedures, and postoperative outcomes were collected from electronic health records.
Results:
Among the 68 patients, 50% were male, with a median age of 1.0 years. Four cases (5.9%) were diagnosed during the prenatal period. The proportions of patients with type I, II, III, and IV coronary sinus septal defect were 51.5%, 5.9%, 16.1%, and 26.5%, respectively. The most common coexisting cardiac anomalies were persistent left superior caval vein. Twenty-seven cases were either missed or misdiagnosed by echocardiogram, accounting for 39.7% of the overall cases, with type I being the most frequently missed diagnosis. Fifty-four patients underwent surgery, two patients received transcutaneous intervention, while the remaining patients did not undergo any surgery or intervention. At follow-up, two patients with type I coronary sinus septal defect died from multiorgan dysfunction, and one patient underwent reoperation due to narrowing of the extracardiac tunnel. The remaining patients did not experience any major events and recovered well.
Conclusion:
Paediatric patients with coronary sinus septal defect often do not exhibit specific clinical manifestations. Enhancing our understanding of the anatomic and haemodynamic characteristics of coronary sinus septal defect can improve the diagnostic accuracy of echocardiography. If diagnosis is suspected, confirmation can be obtained by cardiac CT and cardiac magnetic resonance. Accurate preoperative and intraoperative diagnosis of coronary sinus septal defect contributes to high surgical success rates and favourable treatment outcomes.
Immunological castration can be an alternative to traditional surgical castration. The active immunization against GnRH or kisspeptin has a castrating effect. To date, the fusion protein vaccine of combination with GnRH and kisspeptin have not been studied. Thus, the present study will develop a GnRH6-kisspeptin vaccine by genetic engineering method and investigate its immunocastration effect in male rats. Twenty 20-day-old male rats were randomly divided into two groups: the control group (n=10) and the immunization group (n=10). The initial immunization took place at week 0 followed by three booster doses administered intervals. The control group received an equivalent dose of white oil adjuvant. Orbital blood samples were collected at various time points following the initial immunization, at 0, 2, 4, 6, 8, 10 and 12 weeks, respectively. The entire left testis was weighed and its volume measured at week 12. Samples from the right testis were obtained for histological analysis. Serum levels of GnRH and kisspeptin antibodies, as well as testosterone levels were determined using ELISA. The results showed that the serum levels of GnRH and kisspeptin antibody titres of the immunized rats were significantly higher compared to the control group (P<0.05). Additionally, the testosterone concentration was effectively reduced following the intensified immunization. The testes of the immunized group exhibited a reduction in size and a significant decrease in the number of spermatogonia in the testicular tissue compared to the control group (P<0.05). These data indicate that the recombinant GnRH6-kisspeptin protein effectively induced immunological castration in rats.
Lactylation, a new epigenetic modification, is an important way in which lactate exerts physiological functions. There is a close relationship between increased lactylations caused by lactate and glycolysis, which can interact and play a role in disease through lactate as an intermediate mediator. Current research on lactylations has focused on histone lactylation, but non-histone lactylation also has greater research potential. Due to the ubiquity of lactate modifications in mammalian cells, an increasing number of studies have found that lactate modifications play important roles in tumour cell metabolism, gene transcription and immunity.
Methods
A systematic literature search was carried out using search key terms and synonyms. Full-paper screening was performed based on specific inclusion and exclusion criteria.
Results
Many literatures have reported that the lactylation of protein plays an important role in human diseases and is involved in the occurrence and development of human diseases.
Conclusions
This article summary the correlation between lactylation and glycolysis, histones and non-histone proteins; the relationship between lactonation modifications and tumour development; and the current existence of lactylation-related inhibitors, with a view to provide new basic research ideas and clinical therapeutic tools for lactylation-related diseases.
Psychostimulants and nonstimulants have partially overlapping pharmacological targets on attention-deficit/hyperactivity disorder (ADHD), but whether their neuroimaging underpinnings differ is elusive. We aimed to identify overlapping and medication-specific brain functional mechanisms of psychostimulants and nonstimulants on ADHD.
Methods
After a systematic literature search and database construction, the imputed maps of separate and pooled neuropharmacological mechanisms were meta-analyzed by Seed-based d Mapping toolbox, followed by large-scale network analysis to uncover potential coactivation patterns and meta-regression analysis to examine the modulatory effects of age and sex.
Results
Twenty-eight whole-brain task-based functional MRI studies (396 cases in the medication group and 459 cases in the control group) were included. Possible normalization effects of stimulant and nonstimulant administration converged on increased activation patterns of the left supplementary motor area (Z = 1.21, p < 0.0001, central executive network). Stimulants, relative to nonstimulants, increased brain activations in the left amygdala (Z = 1.30, p = 0.0006), middle cingulate gyrus (Z = 1.22, p = 0.0008), and superior frontal gyrus (Z = 1.27, p = 0.0006), which are within the ventral attention network. Neurodevelopmental trajectories emerged in activation patterns of the right supplementary motor area and left amygdala, with the left amygdala also presenting a sex-related difference.
Conclusions
Convergence in the left supplementary motor area may delineate novel therapeutic targets for effective interventions, and distinct neural substrates could account for different therapeutic responses to stimulants and nonstimulants.
Working memory deficit, a key feature of schizophrenia, is a heritable trait shared with unaffected siblings. It can be attributed to dysregulation in transitions from one brain state to another.
Aims
Using network control theory, we evaluate if defective brain state transitions underlie working memory deficits in schizophrenia.
Method
We examined average and modal controllability of the brain's functional connectome in 161 patients with schizophrenia, 37 unaffected siblings and 96 healthy controls during a two-back task. We use one-way analysis of variance to detect the regions with group differences, and correlated aberrant controllability to task performance and clinical characteristics. Regions affected in both unaffected siblings and patients were selected for gene and functional annotation analysis.
Results
Both average and modal controllability during the two-back task are reduced in patients compared to healthy controls and siblings, indicating a disruption in both proximal and distal state transitions. Among patients, reduced average controllability was prominent in auditory, visual and sensorimotor networks. Reduced modal controllability was prominent in default mode, frontoparietal and salience networks. Lower modal controllability in the affected networks correlated with worse task performance and higher antipsychotic dose in schizophrenia (uncorrected). Both siblings and patients had reduced average controllability in the paracentral lobule and Rolandic operculum. Subsequent out-of-sample gene analysis revealed that these two regions had preferential expression of genes relevant to bioenergetic pathways (calmodulin binding and insulin secretion).
Conclusions
Aberrant control of brain state transitions during task execution marks working memory deficits in patients and their siblings.
Despite growing awareness of the mental health damage caused by air pollution, the epidemiologic evidence on impact of air pollutants on major mental disorders (MDs) remains limited. We aim to explore the impact of various air pollutants on the risk of major MD.
Methods
This prospective study analyzed data from 170 369 participants without depression, anxiety, bipolar disorder, and schizophrenia at baseline. The concentrations of particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5), particulate matter with aerodynamic diameter > 2.5 μm, and ≤ 10 μm (PM2.5–10), nitrogen dioxide (NO2), and nitric oxide (NO) were estimated using land-use regression models. The association between air pollutants and incident MD was investigated by Cox proportional hazard model.
Results
During a median follow-up of 10.6 years, 9 004 participants developed MD. Exposure to air pollution in the highest quartile significantly increased the risk of MD compared with the lowest quartile: PM2.5 (hazard ratio [HR]: 1.16, 95% CI: 1.09–1.23), NO2 (HR: 1.12, 95% CI: 1.05–1.19), and NO (HR: 1.10, 95% CI: 1.03–1.17). Subgroup analysis showed that participants with lower income were more likely to experience MD when exposed to air pollution. We also observed joint effects of socioeconomic status or genetic risk with air pollution on the MD risk. For instance, the HR of individuals with the highest genetic risk and highest quartiles of PM2.5 was 1.63 (95% CI: 1.46–1.81) compared to those with the lowest genetic risk and lowest quartiles of PM2.5.
Conclusions
Our findings highlight the importance of air pollution control in alleviating the burden of MD.
To communicate successfully, listeners must decode both the literal and intended meanings of a speaker’s message. This ability is especially crucial when processing indirect replies as intended meanings can differ significantly from what was said. How native and non-native speakers differ in this ability is an open question. The present study investigated differences in the time course of indirect reply processing in native and non-native Mandarin speakers. EEG signals were recorded while participants were presented with conversations that differed in their directness. For indirect replies, native speakers exhibited a larger left anterior N400 and posterior late positive component (LPC). Conversely, non-native speakers exhibited a larger left-distributed LPC and delayed LPC. Findings support that non-native speakers exhibit delayed processing of indirect replies, potentially because of cognitive resource limitations. Findings from the present study have implications for a broad range of investigations on human communication and second language processing.
Following the 2020 cardiopulmonary resuscitation (CPR) guidelines, this study compared participant’s fatigue with the quality of manual chest compressions performed in the head-up CPR (HUP-CPR) and supine CPR (SUP-CPR) positions for two minutes on a manikin.
Methods:
Both HUP-CPR and SUP-CPR were performed in a randomized order determined by a lottery-style draw. Manual chest compressions were then performed continuously on a realistic manikin for two minutes in each position, with a 30-minute break between each condition. Data were collected on heart rate, blood pressure, and Borg rating of perceived exertion (RPE) scale scores from the participants before and after the compressions.
Results:
Mean chest compression depth (MCCD), mean chest compression rate (MCCR), accurate chest compression depth ratio (ACCDR), and correct hand position ratio were significantly lower in the HUP group than that in the SUP group. However, there were no significant differences in accurate chest compression rate ratio (ACCRR), correct recoil ratio, or mean arterial pressure (MAP) before and after chest compressions between the two groups. Changes in heart rate and RPE scores were greater in the HUP group.
Conclusion:
High-quality manual chest compressions can still be performed when the CPR manikin is placed in the HUP position. However, the quality of chest compressions in the HUP position was poorer than those in the SUP position, and rescuer fatigue was increased.
Understanding the genetic basis of porcine mental health (PMH)-related traits in intensive pig farming systems may promote genetic improvement animal welfare enhancement. However, investigations on this topic have been limited to a retrospective focus, and phenotypes have been difficult to elucidate due to an unknown genetic basis. Intensively farmed pigs, such as those of the Duroc, Landrace, and Yorkshire breeds, have undergone prolonged selection pressure in intensive farming systems. This has potentially subjected genes related to mental health in these pigs to positive selection. To identify genes undergoing positive selection under intensive farming conditions, we employed multiple selection signature detection approaches. Specifically, we integrated disease gene annotations from three human gene–disease association databases (Disease, DisGeNET, and MalaCards) to pinpoint genes potentially associated with pig mental health, revealing a total of 254 candidate genes related to PMH. In-depth functional analyses revealed that candidate PMH genes were significantly overrepresented in signaling-related pathways (e.g., the dopaminergic synapse, neuroactive ligand‒receptor interaction, and calcium signaling pathways) or Gene Ontology terms (e.g., dendritic tree and synapse). These candidate PMH genes were expressed at high levels in the porcine brain regions such as the hippocampus, amygdala, and hypothalamus, and the cell type in which they were significantly enriched was neurons in the hippocampus. Moreover, they potentially affect pork meat quality traits. Our findings make a significant contribution to elucidating the genetic basis of PMH, facilitating genetic improvements for the welfare of pigs and establishing pigs as valuable animal models for gaining insights into human psychiatric disorders.
Despite mounting evidence linking neurological diseases with climate change, the link between autism spectrum disorder (ASD) and global warming has yet to be explored.
Aims
To examine the relationship between the incidence of ASD and global warming from 1990 to 2019 and estimate the trajectory of ASD incidence from 2020 to 2100 globally.
Method
We extracted meteorological data from TerraClimate between 1990 and 2019. To estimate the association between global ASD incidence and temperature variation, we adopted a two-stage analysis strategy using a generalised additive regression model. Additionally, we projected future ASD incidence under four representative shared socioeconomic pathways (SSPs: 126, 245, 370 and 585) by bootstrapping.
Results
Between 1990 and 2019, the global mean incidence of ASD in children under 5 years old was 96.9 per 100 000. The incidence was higher in males (147.5) than in females (46.3). A 1.0 °C increase in the temperature variation was associated with a 3.0% increased risk of ASD incidence. The association was stronger in boys and children living in a low/low-middle sociodemographic index region, as well as in low-latitude areas. According to the SSP585 scenario, by 2100, the children living in regions between 10 and 20° latitude, particularly in Africa, will experience a 68.6% increase in ASD incidence if the association remains. However, the SSP126 scenario is expected to mitigate this increase, with a less than 10% increase in incidence across all latitudes.
Conclusions
Our study highlights the association between climate change and ASD incidence worldwide. Prospective studies are warranted to confirm the association.
Aphis gossypii is one of the most economically important agricultural pests that cause serious crop losses worldwide, and the indiscriminate chemical application causes resistance development in A. gossypii, a major obstacle to successful control. In this study, we selected the up-regulated expression gene AgJHAMT, which was enriched into juvenile hormone pathway though transcriptome sequencing analysis of the cotton aphids that fed on transgenic cotton lines expressing dsAgCYP6CY3 (the TG cotton). The AgJHAMT gene was overexpressed in cotton aphids which fed on the TG cotton, and its expression profile during the nymphs was clarified. Then, silencing AgJHAMT could advance the developmental period of cotton aphids by 0.5 days compared with control groups. The T and t values of cotton aphids in the dsJHAMT treatment group (6.88 ± 0.15, 1.65 ± 0.06) were significantly shorter than that of the sprayed H2O control group (7.6 ± 0.14, 1.97 ± 0.09) (P < 0.05), respectively. The fast growth caused by AgJHAMT silencing was rescued by applying the JH analogue, methoprene. Overall, these findings clarified the function of AgJHAMT in the developmental period of A. gossypii. This study contributes to further clarify the molecular mechanisms of delaying the growth and development of cotton aphids by the transgenic cotton lines expressing dsAgCYP6CY3.
Chinese characters hold great potential to help inform and enrich psycholinguistic research on lexical ambiguity as a large portion of them are ambiguous in nature with meaning varying from context to context. This report presents a psycholinguistic database that contains over 2000 characters with normative measures for meaning dominance and meaning balance, that is, the relative frequency of each meaning associated with a target character and the degree of balance across the meanings of the character. The measurement process takes advantage of the fact that, in Chinese, generating words containing a target character is the most convenient way to specify and disambiguate character meanings. Character meanings stored in ordinary people’s mental lexicon are identified based on the words, along with a small portion of meaning descriptions, listed by over 900 native speakers. The measures of meaning dominance and meaning balance for the characters are derived from computing the relative frequencies of the meanings. Potential research and practical applications of the database, as a valuable tool, to enhance our understanding of the acquisition, representation, and processing of ambiguous lexical items are discussed.
This paper proposes a novel two-layer framework based on conflict-based search and regional divisions to improve the efficiency of multi-robot path planning. The high-level layer targets the reduction of conflicts and deadlocks, while the low-level layer is responsible for actual path planning. Distinct from previous dual-level search frameworks, the novelties of this work are (1) subdivision of planning regions for each robot to decrease the number of conflicts encountered during planning; (2) consideration of the number of robots in the region during planning in the node expansion stage of A*, and (3) formal proof demonstrating the nonzero probability of the proposed method in obtaining a solution, along with providing the upper bound of the solution in a special case. Experimental comparisons with Enhanced Conflict-Based Search demonstrate that the proposed method not only reduces the number of conflicts but also achieves a computation time reduction of over 30%.
A novel method, combining an asymmetric four-grating compressor (AFGC) with pulse post-compression, is numerically demonstrated to improve the spatial uniformity of laser beams and hence to suppress small-scale self-focusing (SSSF) during the beam propagation in nonlinear materials of high peak power lasers. The spatial uniformity of laser beams is an important factor in performing post-compression, due to the spatial intensity modulation, or hot spots will be aggravated during the nonlinear propagation and then seriously damage the subsequent optical components. Three-dimensional numerical simulations of post-compression are implemented based on a femtosecond laser with a standard compressor and an AFGC, respectively. The simulated results indicate that post-compression with the AFGC can efficiently suppress the SSSF and also shorten the laser pulses from 30 fs to sub-10 fs. This work can provide a promising route to overcome the challenge of SSSF and will be meaningful to promote the practical application of the post-compression technique in high peak power lasers.
To meet the demands of laser-ion acceleration at a high repetition rate, we have developed a comprehensive diagnostic system for real-time and in situ monitoring of liquid sheet targets (LSTs). The spatially resolved rapid characterizations of an LST’s thickness, flatness, tilt angle and position are fulfilled by different subsystems with high accuracy. With the help of the diagnostic system, we reveal the dependence of thickness distribution on collision parameters and report the 238-nm liquid sheet generated by the collision of two liquid jets. Control methods for the flatness and tilt angle of LSTs have also been provided, which are essential for applications of laser-driven ion acceleration and others.
Here, we report the generation of MeV alpha-particles from H-11B fusion initiated by laser-accelerated boron ions. Boron ions with maximum energy of 6 MeV and fluence of 109/MeV/sr@5 MeV were generated from 60 nm-thick self-supporting boron nanofoils irradiated by 1 J femtosecond pulses at an intensity of 1019 W/cm2. By bombarding secondary hydrogenous targets with the boron ions, 3 × 105/sr alpha-particles from H-11B fusion were registered, which is consistent with the theoretical yield calculated from the measured boron energy spectra. Our results demonstrated an alternative way toward ultrashort MeV alpha-particle sources employing compact femtosecond lasers. The ion acceleration and product measurement scheme are referential for the studies on the ion stopping power and cross section of the H-11B reaction in solid or plasma.