We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Knowledge of the status of ecosystems is vital to help develop and implement conservation strategies. This is particularly relevant to the Arctic where the need for biodiversity conservation and monitoring has long been recognised, but where issues of local capacity and logistic barriers make surveys challenging. This paper demonstrates how long-term monitoring programmes outside the Arctic can contribute to developing composite trend indicators, using monitoring of annual abundance and population-level reproduction of species of migratory Arctic-breeding waterbirds on their temperate non-breeding areas. Using data from the UK and the Netherlands, countries with year-round waterbird monitoring schemes and supporting relevant shares of Arctic-breeding populations of waterbirds, we present example multi-species abundance and productivity indicators related to the migratory pathways used by different biogeographical populations of Arctic-breeding wildfowl and wader species in the East Atlantic Flyway. These composite trend indicators show that long-term increases in population size have slowed markedly in recent years and in several cases show declines over, at least, the last decade. These results constitute proof of concept. Some other non-Arctic countries located on the flyways of Arctic-breeding waterbirds also annually monitor abundance and breeding success, and we advocate that future development of “Arctic waterbird indicators” should be as inclusive of data as possible to derive the most robust outputs and help account for effects of current changes in non-breeding waterbird distributions. The incorporation of non-Arctic datasets into assessments of the status of Arctic biodiversity is recognised as highly desirable, because logistic constraints in monitoring within the Arctic region limit effective population-scale monitoring there, in effect enabling “monitoring at a distance”.
Depressive symptoms are highly prevalent in first-episode psychosis (FEP) and worsen clinical outcomes. It is currently difficult to determine which patients will have persistent depressive symptoms based on a clinical assessment. We aimed to determine whether depressive symptoms and post-psychotic depressive episodes can be predicted from baseline clinical data, quality of life, and blood-based biomarkers, and to assess the geographical generalizability of these models.
Methods
Two FEP trials were analyzed: European First-Episode Schizophrenia Trial (EUFEST) (n = 498; 2002–2006) and Recovery After an Initial Schizophrenia Episode Early Treatment Program (RAISE-ETP) (n = 404; 2010–2012). Participants included those aged 15–40 years, meeting Diagnostic and Statistical Manual of Mental Disorders IV criteria for schizophrenia spectrum disorders. We developed support vector regressors and classifiers to predict changes in depressive symptoms at 6 and 12 months and depressive episodes within the first 6 months. These models were trained in one sample and externally validated in another for geographical generalizability.
Results
A total of 320 EUFEST and 234 RAISE-ETP participants were included (mean [SD] age: 25.93 [5.60] years, 56.56% male; 23.90 [5.27] years, 73.50% male). Models predicted changes in depressive symptoms at 6 months with balanced accuracy (BAC) of 66.26% (RAISE-ETP) and 75.09% (EUFEST), and at 12 months with BAC of 67.88% (RAISE-ETP) and 77.61% (EUFEST). Depressive episodes were predicted with BAC of 66.67% (RAISE-ETP) and 69.01% (EUFEST), showing fair external predictive performance.
Conclusions
Predictive models using clinical data, quality of life, and biomarkers accurately forecast depressive events in FEP, demonstrating generalization across populations.
Termination of an existing failed corn stand before replanting is essential. Two studies were conducted in Stoneville and Verona, MS, from 2020 to 2021 to evaluate timing of corn or soybean replanting following different herbicide treatments applied to simulated failed stands of corn. Treatments included paraquat alone at 841 g ai ha−1, paraquat at 841 g ha−1 + metribuzin at 211 g ai ha−1, and clethodim at 51 g ai ha−1 + glyphosate at 1,121 g ae ha−1 applied at the V2 growth stage. Replant timings were 1 and 7 d after herbicide treatment (DAT). Pooled across replant timings, paraquat + metribuzin provided the greatest control 3 DAT compared with other treatments in both studies. At 14 and 21 DAT, clethodim + glyphosate controlled more corn than did paraquat + metribuzin and paraquat alone. Control of a simulated failed corn stand with paraquat alone never exceeded 50% at 3 to 21 DAT. Soybean yield in all plots receiving herbicide treatment targeting simulated failed corn stands were similar and ≥2,150 kg ha−1. When applied at the V2 corn growth stage, both clethodim + glyphosate and paraquat + metribuzin controlled a simulated failed stand of corn. This study demonstrated the importance of terminating failed stands of corn before replanting because of dramatic reductions in yield in the plots not treated with herbicide.
Patients with posttraumatic stress disorder (PTSD) exhibit smaller regional brain volumes in commonly reported regions including the amygdala and hippocampus, regions associated with fear and memory processing. In the current study, we have conducted a voxel-based morphometry (VBM) meta-analysis using whole-brain statistical maps with neuroimaging data from the ENIGMA-PGC PTSD working group.
Methods
T1-weighted structural neuroimaging scans from 36 cohorts (PTSD n = 1309; controls n = 2198) were processed using a standardized VBM pipeline (ENIGMA-VBM tool). We meta-analyzed the resulting statistical maps for voxel-wise differences in gray matter (GM) and white matter (WM) volumes between PTSD patients and controls, performed subgroup analyses considering the trauma exposure of the controls, and examined associations between regional brain volumes and clinical variables including PTSD (CAPS-4/5, PCL-5) and depression severity (BDI-II, PHQ-9).
Results
PTSD patients exhibited smaller GM volumes across the frontal and temporal lobes, and cerebellum, with the most significant effect in the left cerebellum (Hedges’ g = 0.22, pcorrected = .001), and smaller cerebellar WM volume (peak Hedges’ g = 0.14, pcorrected = .008). We observed similar regional differences when comparing patients to trauma-exposed controls, suggesting these structural abnormalities may be specific to PTSD. Regression analyses revealed PTSD severity was negatively associated with GM volumes within the cerebellum (pcorrected = .003), while depression severity was negatively associated with GM volumes within the cerebellum and superior frontal gyrus in patients (pcorrected = .001).
Conclusions
PTSD patients exhibited widespread, regional differences in brain volumes where greater regional deficits appeared to reflect more severe symptoms. Our findings add to the growing literature implicating the cerebellum in PTSD psychopathology.
Background: Epilepsy affects approximately 3% of Canadian children. Despite the availability of standardized seizure abortion guidelines, many patients require personalized treatment plans due to genetic factors, medical contraindications, or a history of adverse medication reactions. This study aims to create and evaluate personalized Acute Seizure Action Plans (ASAPs) for epilepsy patients at the Children’s Hospital of Eastern Ontario (CHEO). Methods: Using a Plan-Do-Check-Act (PDCA) framework, we developed electronic ASAPs for integration into participants’ electronic medical records. The effectiveness and user satisfaction of these ASAPs will be evaluated through electronic surveys administered to Neurology physicians, Emergency Department (ED) physicians, and patient participants at baseline and six months post-implementation. Results: Baseline surveys were administered to ED physicians with a 70% response rate, indicating only 43% satisfaction with current generic seizure treatment practice. One hundred percent of respondents expressed interest in using an ASAP, citing challenges in selecting the appropriate anti-seizure medications and determining when to adjust treatment as priorities. These findings underscore the need for ASAP implementation. Conclusions: ED providers desire improved seizure action plans. ASAP implementation is expected to enhance emergency seizure management, reduce adverse events among epilepsy patients, and increase satisfaction of seizure management among all participants.
Background: Trigeminal neuralgia (TN) is more common in multiple sclerosis (MS) patients than in the general population, likely due to demyelination impacting the trigeminal pathways. While brainstem lesions are associated with MS-TN, their precise role remains unclear. Methods: This study investigates the relationship between brainstem MS plaque location, TN symptoms, and treatment response. We retrospectively analyzed brain MRIs of MS-TN patients, segmenting and coregistering brainstem plaques in MNI space. A tractographic atlas of the trigeminal system was generated using high-resolution diffusion imaging from 30 patients. Lesion involvement was determined by intersection with the trigeminal tract, and its association with pain intensity and treatment outcomes was analyzed using linear regression. Results: Our research revealed 83% of MS-TN patients had brainstem lesions near the fourth ventricle. No single lesion hot spot was identified. Lesion volume did not predict symptom recurrence or treatment response. However, 97% of lesions intersected the trigeminal tract, supporting its association with TN symptoms. Conclusions: The strong overlap between lesions and the trigeminal tract suggests a potential pain generator in MS-TN. Further research is needed to determine whether similar lesions exist in asymptomatic MS patients and to confirm this hypothesis. Future studies will explore whether tract involvement better predicts clinical response to treatment.
Background: Neck vessel imaging is often performed in hyperacute stroke to allow neurointerventionalists to estimate access complexity. This study aimed to assess clinician agreement on catheterization strategies based on imaging in these scenarios. Methods: An electronic portfolio of 60 patients with acute ischemic stroke was sent to 53 clinicians. Respondents were asked: (1) the difficulty of catheterization through femoral access with a regular Vertebral catheter, (2) whether to use a Simmons or reverse-curve catheter initially, and (3) whether to consider an alternative access site. Agreement was assessed using Fleiss’ Kappa statistics. Results: Twenty-two respondents (7 neurologists, 15 neuroradiologists) completed the survey. Overall there was slight interrater agreement (κ=0.17, 95% CI: 0.10–0.25). Clinicians with >50 cases annually had better agreement (κ=0.22) for all questions than those with fewer cases (κ=0.07). Agreement did not significantly differ by imaging modality: CTA (κ=0.18) and MRA (κ=0.14). In 40/59 cases (67.80%), at least 25% of clinicians disagreed on whether to use a Simmons or reverse-curve catheter initially. Conclusions: Agreement on catheterization strategies remains fair at best. Our results suggest that visual assessment of pre-procedural vessels imaging is not reliable for the estimation of endovascular access complexity.
Background: Amyotrophic Lateral Sclerosis (ALS) leads to progressive functional decline and reduced survival. Identifying clinical predictors like ALSFRS-R and FVC is essential for prognosis and disease management. Understanding progression profiles based on diagnostic characteristics supports clinical trial design and assessment of treatment response. This study evaluates disease progression and survival predictors in ALS patients from the CNDR. Methods: 1565 ALS patients in the CNDR were analyzed to assess baseline ALSFRS-R, FVC, time from symptom onset to diagnosis, and their association with disease progression and survival. Results: At diagnosis, ALSFRS-R was 44.7 (SD = 5.46), with 72.3% scoring ≥44. Mean FVC was 84.2% (SD = 23.3), with 78.3% of patients having FVC ≥65%. ALSFRS-R declined at 1.06 points/month (SD = 1.33), with faster progression in patients diagnosed within 24 months (1.61 points/month). Patients with ALSFRS-R ≥44 had a median survival of 41.8 months, compared to 30.9 months for those <44 (p < 0.001). Similarly, FVC ≥65% was associated with longer survival (35.4 vs. 29.5 months, p = 0.002). Conclusions: ALSFRS-R and FVC at diagnosis predict survival and inform clinical decision-making. These findings highlight the importance of early diagnosis and targeted interventions to slow disease progression and improve patient outcomes.
Multicenter clinical trials are essential for evaluating interventions but often face significant challenges in study design, site coordination, participant recruitment, and regulatory compliance. To address these issues, the National Institutes of Health’s National Center for Advancing Translational Sciences established the Trial Innovation Network (TIN). The TIN offers a scientific consultation process, providing access to clinical trial and disease experts who provide input and recommendations throughout the trial’s duration, at no cost to investigators. This approach aims to improve trial design, accelerate implementation, foster interdisciplinary teamwork, and spur innovations that enhance multicenter trial quality and efficiency. The TIN leverages resources of the Clinical and Translational Science Awards (CTSA) program, complementing local capabilities at the investigator’s institution. The Initial Consultation process focuses on the study’s scientific premise, design, site development, recruitment and retention strategies, funding feasibility, and other support areas. As of 6/1/2024, the TIN has provided 431 Initial Consultations to increase efficiency and accelerate trial implementation by delivering customized support and tailored recommendations. Across a range of clinical trials, the TIN has developed standardized, streamlined, and adaptable processes. We describe these processes, provide operational metrics, and include a set of lessons learned for consideration by other trial support and innovation networks.
The First Large Absorption Survey in H i (FLASH) is a large-area radio survey for neutral hydrogen in and around galaxies in the intermediate redshift range $0.4\lt z\lt1.0$, using the 21-cm H i absorption line as a probe of cold neutral gas. The survey uses the ASKAP radio telescope and will cover 24,000 deg$^2$ of sky over the next five years. FLASH breaks new ground in two ways – it is the first large H i absorption survey to be carried out without any optical preselection of targets, and we use an automated Bayesian line-finding tool to search through large datasets and assign a statistical significance to potential line detections. Two Pilot Surveys, covering around 3000 deg$^2$ of sky, were carried out in 2019-22 to test and verify the strategy for the full FLASH survey. The processed data products from these Pilot Surveys (spectral-line cubes, continuum images, and catalogues) are public and available online. In this paper, we describe the FLASH spectral-line and continuum data products and discuss the quality of the H i spectra and the completeness of our automated line search. Finally, we present a set of 30 new H i absorption lines that were robustly detected in the Pilot Surveys, almost doubling the number of known H i absorption systems at $0.4\lt z\lt1$. The detected lines span a wide range in H i optical depth, including three lines with a peak optical depth $\tau\gt1$, and appear to be a mixture of intervening and associated systems. Interestingly, around two-thirds of the lines found in this untargeted sample are detected against sources with a peaked-spectrum radio continuum, which are only a minor (5–20%) fraction of the overall radio-source population. The detection rate for H i absorption lines in the Pilot Surveys (0.3 to 0.5 lines per 40 deg$^2$ ASKAP field) is a factor of two below the expected value. One possible reason for this is the presence of a range of spectral-line artefacts in the Pilot Survey data that have now been mitigated and are not expected to recur in the full FLASH survey. A future paper in this series will discuss the host galaxies of the H i absorption systems identified here.
The Australian SKA Pathfinder (ASKAP) offers powerful new capabilities for studying the polarised and magnetised Universe at radio wavelengths. In this paper, we introduce the Polarisation Sky Survey of the Universe’s Magnetism (POSSUM), a groundbreaking survey with three primary objectives: (1) to create a comprehensive Faraday rotation measure (RM) grid of up to one million compact extragalactic sources across the southern $\sim50$% of the sky (20,630 deg$^2$); (2) to map the intrinsic polarisation and RM properties of a wide range of discrete extragalactic and Galactic objects over the same area; and (3) to contribute interferometric data with excellent surface brightness sensitivity, which can be combined with single-dish data to study the diffuse Galactic interstellar medium. Observations for the full POSSUM survey commenced in May 2023 and are expected to conclude by mid-2028. POSSUM will achieve an RM grid density of around 30–50 RMs per square degree with a median measurement uncertainty of $\sim$1 rad m$^{-2}$. The survey operates primarily over a frequency range of 800–1088 MHz, with an angular resolution of 20” and a typical RMS sensitivity in Stokes Q or U of 18 $\mu$Jy beam$^{-1}$. Additionally, the survey will be supplemented by similar observations covering 1296–1440 MHz over 38% of the sky. POSSUM will enable the discovery and detailed investigation of magnetised phenomena in a wide range of cosmic environments, including the intergalactic medium and cosmic web, galaxy clusters and groups, active galactic nuclei and radio galaxies, the Magellanic System and other nearby galaxies, galaxy halos and the circumgalactic medium, and the magnetic structure of the Milky Way across a very wide range of scales, as well as the interplay between these components. This paper reviews the current science case developed by the POSSUM Collaboration and provides an overview of POSSUM’s observations, data processing, outputs, and its complementarity with other radio and multi-wavelength surveys, including future work with the SKA.
Posttraumatic stress disorder (PTSD) has been associated with advanced epigenetic age cross-sectionally, but the association between these variables over time is unclear. This study conducted meta-analyses to test whether new-onset PTSD diagnosis and changes in PTSD symptom severity over time were associated with changes in two metrics of epigenetic aging over two time points.
Methods
We conducted meta-analyses of the association between change in PTSD diagnosis and symptom severity and change in epigenetic age acceleration/deceleration (age-adjusted DNA methylation age residuals as per the Horvath and GrimAge metrics) using data from 7 military and civilian cohorts participating in the Psychiatric Genomics Consortium PTSD Epigenetics Workgroup (total N = 1,367).
Results
Meta-analysis revealed that the interaction between Time 1 (T1) Horvath age residuals and new-onset PTSD over time was significantly associated with Horvath age residuals at T2 (meta β = 0.16, meta p = 0.02, p-adj = 0.03). The interaction between T1 Horvath age residuals and changes in PTSD symptom severity over time was significantly related to Horvath age residuals at T2 (meta β = 0.24, meta p = 0.05). No associations were observed for GrimAge residuals.
Conclusions
Results indicated that individuals who developed new-onset PTSD or showed increased PTSD symptom severity over time evidenced greater epigenetic age acceleration at follow-up than would be expected based on baseline age acceleration. This suggests that PTSD may accelerate biological aging over time and highlights the need for intervention studies to determine if PTSD treatment has a beneficial effect on the aging methylome.
The formation of Kelvin–Helmholtz-like rollers (referred to as K–H rollers) over riblet surfaces has been linked to the drag-increasing behaviour seen in certain riblet geometries, such as sawtooth and blade riblets, when the riblet size reaches sufficiently large viscous scales (Endrikat et al. (2021a), J. Fluid Mech. 913, A37). In this study, we focus on the sawtooth geometry of fixed physical size, and experimentally examine the response of these K–H rollers to further increases in viscous scaled riblet sizes, by adopting the conventional approach of increasing freestream speeds (and consequently, the friction Reynolds number). Rather than continual strengthening, the present study shows a gradual weakening of these K–H rollers with increasing sawtooth riblet size. This is achieved by an analysis of the roller geometric characteristics using both direct numerical simulations and hot-wire anemometry databases at matched viscous scaled riblet spacings, with the former used to develop a novel methodology for detecting these rollers via streamwise velocity signatures (e.g. as acquired by hot wires). Spectral analysis of the streamwise velocity time series, acquired within riblet grooves, reveals that the frequencies (and the streamwise wavelengths) of the K–H rollers increase with increasing riblet size. Cross-correlation spectra, estimated from unique two-point hot-wire measurements in the cross-plane, show a weakening of the K–H rollers and a reduction in their wall-normal coherence with increasing riblet size. Besides contributing to our understanding of the riblet drag-increasing mechanisms, the present findings also have implications for the heat transfer enhancing capabilities of sawtooth riblets, which have been associated previously with the formation of K–H rollers. The present study also suggests conducting future investigations by decoupling the effects of viscous scaled riblet spacing and friction Reynolds numbers, to characterise their influence on the K–H rollers independently.
Florpyrauxifen-benzyl is a postemergence rice herbicide that has reduced rice yield in some situations, and producers are concerned that the impact could be even greater with low rice seeding densities. Therefore, research was conducted in Stoneville, MS, from 2019 to 2021, to evaluate the effect of florpyrauxifen-benzyl on rice yield when a hybrid was seeded at reduced densities. Rice cultivar FullPage RT 7521 FP was seeded at 10, 17, 24, 30, and 37 kg ha−1. At the 4-leaf to 1-tiller growth stage, florpyrauxifen-benzyl was applied at 0 or 58 g ai ha−1. Rice injury following application of florpyrauxifen-benzyl was ≤8% across all seeding rates and evaluation intervals. Application of florpyrauxifen-benzyl reduced plant heights by 14% to all seeding rates but did not result in delayed rice maturity. When florpyrauxifen-benzyl was not applied to rice that was seeded at 10 and 17 kg ha−1 seeding rates, rice matured slower than when it was seeded at 24, 30, and 37 kg ha−1. When florpyrauxifen-benzyl was applied, rough rice grain yields were reduced by at the 17 and 37 kg ha−1 seeding rates, but not at any other seeding rate. In conclusion, application of florpyrauxifen-benzyl at a 2× rate can cause a loss of yield resulting from variation in rice densities.
Objectives/Goals: Cerebral amyloid angiopathy (CAA) characterized by the accumulation of amyloid-beta in the cerebrovasculature, affects blood vessel integrity leading to brain hemorrhages and an accelerated cognitive decline in Alzheimer’s disease patients. In this study, we are conducting a genome-wide association study to identify genetic risk factors for CAA. Methods/Study Population: We genotyped 1253 additional AD cases using and curated existing genome-wide genotype data from 110 AD and 502 non-AD donors from the Mayo Clinic Brain Bank. We performed QC and imputation of all datasets. We conducted GWAS in AD only (N = 1,363), non-AD only, as well as the combined cohort (N = 1,865) by testing imputed variant dosages for association with square root transformed CAA using linear regression, adjusting for relevant covariates. To assess associations in the context of major CAA risk factors, we performed interaction analysis with APOEe4 presence and sex; and pursued stratified analyses. We collected peripheral gene expression measures using RNA isolated from 188 PAXgene tube samples of 95 donors collected across multiple time points. More than 1/3 of these participants have MRI measures collected. Results/Anticipated Results: Variants at the APOE locus were identified as the most significant in our study. In addition, several other variants with suggestive association were found under the main model adjusting for AD neuropathology (Braak and Thal). LINC-PINT splice variant remained associated with lower CAA scores in AD cases without the APOEe4 risk allele. To enhance the robustness of our findings, we are pursuing further expansion of our study cohort. In the periphery, we expect to identify expression changes associated with neuroimaging indicators of CAA and determine if variants and genes discovered via GWAS are implicated in these changes. Discussion/Significance of Impact: We expect this study will provide further insight into the genetic architecture underlying risk for CAA both in the context of significant AD pathology and without. Characterization of genetic variants and functional outcomes in the context of neuropathology may lead to new avenues of research aimed at identifying biomarkers and therapies to treat CAA
Quantum field theory predicts a nonlinear response of the vacuum to strong electromagnetic fields of macroscopic extent. This fundamental tenet has remained experimentally challenging and is yet to be tested in the laboratory. A particularly distinct signature of the resulting optical activity of the quantum vacuum is vacuum birefringence. This offers an excellent opportunity for a precision test of nonlinear quantum electrodynamics in an uncharted parameter regime. Recently, the operation of the high-intensity Relativistic Laser at the X-ray Free Electron Laser provided by the Helmholtz International Beamline for Extreme Fields has been inaugurated at the High Energy Density scientific instrument of the European X-ray Free Electron Laser. We make the case that this worldwide unique combination of an X-ray free-electron laser and an ultra-intense near-infrared laser together with recent advances in high-precision X-ray polarimetry, refinements of prospective discovery scenarios and progress in their accurate theoretical modelling have set the stage for performing an actual discovery experiment of quantum vacuum nonlinearity.
We present a novel scheme for rapid quantitative analysis of debris generated during experiments with solid targets following relativistic laser–plasma interaction at high-power laser facilities. Results are supported by standard analysis techniques. Experimental data indicate that predictions by available modelling for non-mass-limited targets are reasonable, with debris of the order of hundreds of μg per shot. We detect for the first time two clearly distinct types of debris emitted from the same interaction. A fraction of the debris is ejected directionally, following the target normal (rear and interaction side). The directional debris ejection towards the interaction side is larger than on the side of the target rear. The second type of debris is characterized by a more spherically uniform ejection, albeit with a small asymmetry that favours ejection towards the target rear side.
We present the first results from a new backend on the Australian Square Kilometre Array Pathfinder, the Commensal Realtime ASKAP Fast Transient COherent (CRACO) upgrade. CRACO records millisecond time resolution visibility data, and searches for dispersed fast transient signals including fast radio bursts (FRB), pulsars, and ultra-long period objects (ULPO). With the visibility data, CRACO can localise the transient events to arcsecond-level precision after the detection. Here, we describe the CRACO system and report the result from a sky survey carried out by CRACO at 110-ms resolution during its commissioning phase. During the survey, CRACO detected two FRBs (including one discovered solely with CRACO, FRB 20231027A), reported more precise localisations for four pulsars, discovered two new RRATs, and detected one known ULPO, GPM J1839 $-$10, through its sub-pulse structure. We present a sensitivity calibration of CRACO, finding that it achieves the expected sensitivity of 11.6 Jy ms to bursts of 110 ms duration or less. CRACO is currently running at a 13.8 ms time resolution and aims at a 1.7 ms time resolution before the end of 2024. The planned CRACO has an expected sensitivity of 1.5 Jy ms to bursts of 1.7 ms duration or less and can detect $10\times$ more FRBs than the current CRAFT incoherent sum system (i.e. 0.5 $-$2 localised FRBs per day), enabling us to better constrain the models for FRBs and use them as cosmological probes.
With wide-field phased array feed technology, the Australian Square Kilometre Array Pathfinder (ASKAP) is ideally suited to search for seemingly rare radio transient sources that are difficult to discover previous-generation narrow-field telescopes. The Commensal Real-time ASKAP Fast Transient (CRAFT) Survey Science Project has developed instrumentation to continuously search for fast radio transients (duration $\lesssim$ 1 s) with ASKAP, with a particular focus on finding and localising fast radio bursts (FRBs). Since 2018, the CRAFT survey has been searching for FRBs and other fast transients by incoherently adding the intensities received by individual ASKAP antennas, and then correcting for the impact of frequency dispersion on these short-duration signals in the resultant incoherent sum (ICS) in real time. This low-latency detection enables the triggering of voltage buffers, which facilitates the localisation of the transient source and the study of spectro-polarimetric properties at high time resolution. Here we report the sample of 43 FRBs discovered in this CRAFT/ICS survey to date. This includes 22 FRBs that had not previously been reported: 16 FRBs localised by ASKAP to $\lesssim 1$ arcsec and 6 FRBs localised to $\sim 10$ arcmin. Of the new arcsecond-localised FRBs, we have identified and characterised host galaxies (and measured redshifts) for 11. The median of all 30 measured host redshifts from the survey to date is $z=0.23$. We summarise results from the searches, in particular those contributing to our understanding of the burst progenitors and emission mechanisms, and on the use of bursts as probes of intervening media. We conclude by foreshadowing future FRB surveys with ASKAP using a coherent detection system that is currently being commissioned. This will increase the burst detection rate by a factor of approximately ten and also the distance to which ASKAP can localise FRBs.