We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Accurate online estimation of the payload parameters benefits robot control. In the existing approaches, however, on the one hand, only the linear friction model was used for online payload identification, which reduced the online estimation accuracy. On the other hand, the estimation models contain much noise because of using actual joint trajectory signals. In this article, a new estimation algorithm based on parameter difference for the payload dynamics is proposed. This method uses a nonlinear friction model for the online payload estimation instead of the traditionally linear one. In addition, it considers the commanded joint trajectory signals as the computation input to reduce the model noise. The main contribution of this article is to derive a symbolic relationship between the parameter difference and the payload parameters and then apply it to the online payload estimation. The robot base parameters without payload were identified offline and regarded as the prior information. The one with payload can be solved online by the recursive least squares method. The dynamics of the payload can be then solved online based on the numerical difference of the two parameter sets. Finally, experimental comparisons and a manual guidance application experiment are shown. The results confirm that our algorithm can improve the online payload estimation accuracy (especially the payload mass) and the manual guidance comfort.
Caused by multiple risk factors, heavy burden of major depressive disorder (MDD) poses serious challenges to public health worldwide over the past 30 years. Yet the burden and attributable risk factors of MDD were not systematically known. We aimed to reveal the long-term spatio-temporal trends in the burden and attributable risk factors of MDD at global, regional and national levels during 1990–2019.
Methods
We obtained MDD and attributable risk factors data from Global Burden of Disease Study 2019. We used joinpoint regression model to assess the temporal trend in MDD burden, and age–period–cohort model to measure the effects of age, period and birth cohort on MDD incidence rate. We utilized population attributable fractions (PAFs) to estimate the specific proportions of MDD burden attributed to given risk factors.
Results
During 1990–2019, the global number of MDD incident cases, prevalent cases and disability-adjusted life years (DALYs) increased by 59.10%, 59.57% and 58.57%, respectively. Whereas the global age-standardized incidence rate (ASIR), age-standardized prevalence rate (ASPR) and age-standardized DALYs rate (ASDR) of MDD decreased during 1990–2019. The ASIR, ASPR and ASDR in women were 1.62, 1.62 and 1.60 times as that in men in 2019, respectively. The highest age-specific incidence, prevalence and DALYs rate occurred at the age of 60–64 in women, and at the age of 75–84 in men, but the maximum increasing trends in these age-specific rates occurred at the age of 5–9. Population living during 2000–2004 had higher risk of MDD. MDD burden varied by socio-demographic index (SDI), regions and nations. In 2019, low-SDI region, Central sub-Saharan Africa and Uganda had the highest ASIR, ASPR and ASDR. The global PAFs of intimate partner violence (IPV), childhood sexual abuse (CSA) and bullying victimization (BV) were 8.43%, 5.46% and 4.86% in 2019, respectively.
Conclusions
Over the past 30 years, the global ASIR, ASPR and ASDR of MDD had decreased trends, while the burden of MDD was still serious, and multiple disparities in MDD burden remarkably existed. Women, elderly and populations living during 2000–2004 and in low-SDI regions, had more severe burden of MDD. Children were more susceptible to MDD. Up to 18.75% of global MDD burden would be eliminated through early preventing against IPV, CSA and BV. Tailored strategies-and-measures in different regions and demographic groups based on findings in this studywould be urgently needed to eliminate the impacts of modifiable risk factors on MDD, and then mitigate the burden of MDD.
The damage characteristics of fused silica were investigated under low-temporal coherence light (LTCL). It was found that the laser-induced damage threshold (LIDT) of fused silica for the LTCL was lower than that of the single longitudinal mode pulse laser, and for the LTCLs, the LIDTs decrease with the increasing of laser bandwidth, which is not consistent with the temporal spike intensity. This is due to the nonlinear self-focusing effect and multi-pulse accumulation effect. The specific reasons were analyzed based on theoretical simulation and experimental study. This research work is helpful and of great significance for the construction of high-power LTCL devices.
Seven accelerator mass spectrometry radiocarbon (AMS 14C) dates (7260±106∼7607±95 BP averaged 7444±103 BP) on a giant oyster shell, collected from an ancient shore of the Taipei Basin, are similar to the LSC (liquid scintillation counting) 14C age (7260±46 BP) of a grass sample inside the shell. The calibrated 14C ages of the C. gigas by Marine20 are 7490±240∼7805±230 cal BP (average 7660±96 cal BP), generally agreed with the calibrated LSC 14C ages of the grass and the oyster shell. Combined with other 14C ages of shoreline samples in the Taipei Basin, it is evident that sea level rose from 8600 to 7600 cal BP and reached a stand higher than modern sea level. During this marine transgression, the sedimentation rate along the shoreline was very high because 14C dating was not able to detect age differences for 4–5 m thick sediment sequences. Sixty-nine analyses of δ18O and δ13C from the oldest part of the shell exhibit clear seasonal cycles, with a 4-year period of growth in the 5.5-cm section. According to the δ18O values, the ancient oyster grew in a warmer-than-present shoreline environment, suggesting that the current absence of the giant oyster in Taiwan is not due to warming conditions.
This article aims to analyze the relationship between user characteristics on social networks and influenza.
Methods:
Three specific research questions are investigated: (1) we classify Weibo updates to recognize influenza-related information based on machine learning algorithms and propose a quantitative model for influenza susceptibility in social networks; (2) we adopt in-degree indicator from complex networks theory as social media status to verify its coefficient correlation with influenza susceptibility; (3) we also apply the LDA topic model to explore users’ physical condition from Weibo to further calculate its coefficient correlation with influenza susceptibility. From the perspective of social networking status, we analyze and extract influenza-related information from social media, with many advantages including efficiency, low cost, and real time.
Results:
We find a moderate negative correlation between the susceptibility of users to influenza and social network status, while there is a significant positive correlation between physical condition and susceptibility to influenza.
Conclusions:
Our findings reveal the laws behind the phenomenon of online disease transmission, and providing important evidence for analyzing, predicting, and preventing disease transmission. Also, this study provides theoretical and methodological underpinnings for further exploration and measurement of more factors associated with infection control and public health from social networks.
Purple nutsedge (Cyperus rotundus L.) is a globally distributed noxious weed that poses a significant challenge for control due to its fast and efficient propagation through the tuber, which is the primary reproductive organ. Gibberellic acid (GA3) has proven to be crucial for tuberization in tuberous plants. Therefore, understanding the relationship between GA3 and tuber development and propagation of C. rotundus will provide valuable information for controlling this weed. This study shows that the GA3 content decreases with tuber development, which corresponds to lower expression of bioactive GA3 synthesis genes (CrGA20ox, two CrGA3ox genes) and two upregulated GA3 catabolism genes (CrGA2ox genes), indicating that GA3 is involved in tuber development. Simultaneously, the expression of two CrDELLA genes and CrGID1 declines with tuber growth and decreased GA3, and yeast two-hybrid assays confirm that the GA3 signaling is DELLA-dependent. Furthermore, exogenous application of GA3 markedly reduces the number and the width of tubers and represses the growth of the tuber chain, further confirming the negative impact that GA3 has on tuber development and propagation. Taken together, these results demonstrate that GA3 is involved in tuber development and regulated by the DELLA-dependent pathway in C. rotundus and plays a negative role in tuber development and propagation.
Compared with nitrogen and argon, helium is lighter and can better reduce the beam loss caused by angular scattering during beam transmission. The molecular dissociation cross-section in helium is high and stable at low energies, which makes helium the prevalent stripping gas in low-energy accelerator mass spectrometry (AMS). To study the stripping behavior of 14C ions in helium at low energies, the charge state distributions of carbon ion beams with −1, +1, +2, +3, and +4 charge states were measured at energies of 70–220 keV with a compact 14C-AMS at Guangxi Normal University (GXNU). The experimental data were used to analyze the stripping characteristics of C-He in the energy range of 70–220 keV, and new charge state yields and exchange cross-sections in C-He were obtained at energies of 70–220 keV.
Stereo vision allows machines to perceive their surroundings, with plane identification serving as a crucial aspect of perception. The accuracy of identification constrains the applicability of stereo systems. Some stereo vision cameras are cost-effective, compact, and user-friendly, resulting in widespread use in engineering applications. However, identification errors limit their effectiveness in quantitative scenarios. While certain calibration methods enhance identification accuracy using camera distortion models, they rely on specific models tailored to a camera’s unique structure. This article presents a calibration method that is not dependent on any particular distortion model, capable of correcting plane position and orientation identified by any algorithm, provided that the identification error is biased. A high-precision mechanical calibration platform is designed to acquire accurate calibration data while using the same detected material in real measurement scenarios. Experimental comparisons confirm the efficacy of plane pose correction on PCL-RANSAC, with the average relative error of distance reduced by 5.4 times and the average absolute error of angle decreasing by 41.2%.
Breast cancer is a high-risk disease with a high mortality rate among women. Chemotherapy plays an important role in the treatment of breast cancer. However, chemotherapy eventually results in tumours that are resistant to drugs. In recent years, many studies have revealed that the activation of Wnt/β-catenin signalling is crucial for the emergence and growth of breast tumours as well as the development of drug resistance. Additionally, drugs that target this pathway can reverse drug resistance in breast cancer therapy. Traditional Chinese medicine has the properties of multi-target and tenderness. Therefore, integrating traditional Chinese medicine and modern medicine into chemotherapy provides a new strategy for reversing the drug resistance of breast tumours. This paper mainly reviews the possible mechanism of Wnt/β-catenin in promoting the process of breast tumour drug resistance, and the progress of alkaloids extracted from traditional Chinese medicine in the targeting of this pathway in order to reverse the drug resistance of breast cancer.
The purpose of this study was to analyse the clinical characteristics of patients with severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) PCR re-positivity after recovering from coronavirus disease 2019 (COVID-19). Patients (n = 1391) from Guangzhou, China, who had recovered from COVID-19 were recruited between 7 September 2021 and 11 March 2022. Data on epidemiology, symptoms, laboratory test results and treatment were analysed. In this study, 42.7% of recovered patients had re-positive result. Most re-positive patients were asymptomatic, did not have severe comorbidities, and were not contagious. The re-positivity rate was 39%, 46%, 11% and 25% in patients who had received inactivated, mRNA, adenovirus vector and recombinant subunit vaccines, respectively. Seven independent risk factors for testing re-positive were identified, and a predictive model was constructed using these variables. The predictors of re-positivity were COVID-19 vaccination status, previous SARs-CoV-12 infection prior to the most recent episode, renal function, SARS-CoV-2 IgG and IgM antibody levels and white blood cell count. The predictive model could benefit the control of the spread of COVID-19.
With economic reform, in China, labour turnover of seafarers became more possible. However, little attention has been paid to its consequences. A limited literature indicates that Chinese seafarers may leave state-owned enterprises to become freelance seafarers, working in the global labour market for better wages and employment conditions. There have been predictions of a substantial increase in seafarer export, with China becoming the top labour supplier to the global maritime industry. However, such expectations have been largely unmet. Through 157 qualitative interviews with seafarers and managers in Chinese ship crewing agencies, we explore some reasons why this may be so. The findings suggest that Chinese seafarers are in fact limited in their willingness and ability to leave their companies. This is due to a complex mixture of organisational, regulatory, infrastructural and personal contexts that are their everyday experience of work in China. Analysis further suggests that the underdevelopment of a national regulatory infrastructure and welfare support mechanism for seafarers, along with poor implementation of the Maritime Labour Convention 2006, combine to limit the extent of the reform of the Chinese seafaring labour market. Together, these factors help to explain why China’s seafaring labour export has been far lower than anticipated.
Previous research has shown that using foreign languages reduces cognitive biases. Here, we investigate whether this foreign-language effect extends to self-related cognition – in particular, the self-positivity bias, which refers to automatic association of oneself with positive information and has a facilitation role in maintaining mental health. We applied event-related brain potentials and oscillations in the implicit association test where Chinese–English bilinguals responded to category words (self vs. others) and attribute words (positive vs. negative) in either their native language Chinese or their foreign language English. In response to Chinese words, a self-positivity bias occurred, indexed by a positive D-score in reaction times as well as by smaller N200, larger P3-like/LPC responses, and lower alpha desynchronization when self words were associated with positive relative to negative traits. However, the bias was diminished in the English context. Overall, our findings provide important implications for language choices when self-protective mechanisms should be enhanced.
The South Qinling block, a segment of the Yangtze craton involved in the Qinling–Dabie orogen, is critical for understanding the tectonic evolution of eastern China. However, the tectonic setting of the South Qinling block and the northern margin of the Yangtze block during middle Neoproterozoic time has long been the subject of debate, with two distinctly different models (continental rift or volcanic arc) proposed. Here, a comprehensive study of zircon U–Pb geochronology and geochemistry has been carried out on the Chengwan granitic pluton from the Suizao terrane in the South Qinling block. The granites are monzogranite and syenogranite in lithology, and are mainly composed of potash feldspar, quartz, plagioclase and biotite. This suite has long been regarded as a Palaeozoic magmatic pluton, but zircon U–Pb ages of 809 ± 9 Ma and 816 ± 4 Ma are obtained in this study. The granites are metaluminous to strongly peraluminous with high alkali contents, and exhibit highly fractionated features, including high SiO2, low Zr/Hf ratios, rare earth element tetrad effects and enrichment of K and Rb. They show Hf–Nd isotopic decoupling, which may be genetically related to their petrogenetic process. Based on the geochemical features and the positive εHf(t) values of the zircons, it is indicated that the granites may have been derived from partial melting of juvenile tonalitic rocks by biotite breakdown under fluid-absent conditions. The Chengwan granite geochemically belongs to the A2-subtype granites, suggesting that it might have formed in a post-orogenic tectonic setting. The highly fractionated A-type granite in this study may represent extensional collapse shortly after the collisional events in the South Qinling block, and thus indicate a tectonic regime switch, from compression to extension, as early as middle Neoproterozoic time. Integrating our new data with documented magmatic, metamorphic and sedimentary events during middle Neoproterozoic time in the region may support a continental rift model, and argues against arc models.
Poor utilisation efficiency of carbohydrate always leads to metabolic phenotypes in fish. The intestinal microbiota plays an important role in carbohydrate degradation. Whether the intestinal bacteria could alleviate high-carbohydrate diet (HCD)-induced metabolic phenotypes in fish remains unknown. Here, a strain affiliated to Bacillus amyloliquefaciens was isolated from the intestine of Nile tilapia. A basal diet (CON), HCD or HCD supplemented with B. amy SS1 (HCB) was used to feed fish for 10 weeks. The beneficial effects of B. amy SS1 on weight gain and protein accumulation were observed. Fasting glucose and lipid deposition were decreased in the HCB group compared with the HCD group. High-throughput sequencing showed that the abundance of acetate-producing bacteria was increased in the HCB group relative to the HCD group. Gas chromatographic analysis indicated that the concentration of intestinal acetate was increased dramatically in the HCB group compared with that in the HCD group. Glucagon-like peptide-1 was also increased in the intestine and serum of the HCB group. Thus, fish were fed with HCD, HCD supplemented with sodium acetate at 900 mg/kg (HLA), 1800 mg/kg (HMA) or 3600 mg/kg (HHA) diet for 8 weeks, and the HMA and HHA groups mirrored the effects of B. amy SS1. This study revealed that B. amy SS1 could alleviate the metabolic phenotypes caused by HCD by enriching acetate-producing bacteria in fish intestines. Regulating the intestinal microbiota and their metabolites might represent a powerful strategy for fish nutrition modulation and health maintenance in future.
The jungles of Linyun and Longlin Autonomous Prefecture, located in the heart of the southwestern Guangxi Zhuang Autonomous Region of China, are home to the oldest tea trees (Camellia sinensis) in the world. In the absence of regular annual rings, radiocarbon (14C) dating is one of the most powerful tools that can assist in the determination of the ages and growth rates of these plants. In this work, cores were extracted from large ancient tea trees in a central Longlin rain forest; extraction of carbon was performed with an automated sample preparation system. The 14C levels in the tree cores were measured using accelerator mass spectrometry (AMS) at the University of Tsukuba. These measurements indicated that contrary to conventional views, the ages of trees in these forests range up to ~700 years, and the growth rate of this species is notably slow, exhibiting a long-term radial growth rate of 0.039±0.006 cm/yr. It was demonstrated that 14C analyses provide accurate determination of ages and growth rates for subtropical wild tea trees.
Radiocarbon (14C) has become a unique and powerful tracer in source apportionment of atmospheric carbonaceous particles. In this study, the Asia Pacific Economic Cooperation summit (APEC) held in Beijing in 2014 was used as a demonstration to research the source apportionment of atmosphere PM2.5. We used a 200 kV single stage accelerator mass spectrometer recently completed at China Institute of Atomic Energy (CIAE). The PM2.5 samples related to above case were collected, and the characteristics of radiocarbon in organic carbon (OC) and elemental carbon (EC) in samples were analyzed using the AMS. The results show that the Before-APEC pollution emission mode is different from the During-APEC and After-APEC pollution emission modes. For Before-APEC, During-APEC and After-APEC, the average values of fossil carbon fraction of OC are 0.463, 0.431 and 0.615, respectively, and those of EC are 0.644, 0.561 and 0.687. The fossil source contributions of traffic activities using fossil fuels to OC and EC are 15.8 % and 21.9 %, respectively. The fossil source contributions of industrial activities to OC and EC are 38.0 % and 8.2 %, respectively. It is about 7–10 days that is needed to take to regenerate the PM2.5 pollution caused by human activities.
Existing data on folate status and hepatocellular carcinoma (HCC) prognosis are scarce. We prospectively examined whether serum folate concentrations at diagnosis were associated with liver cancer-specific survival (LCSS) and overall survival (OS) among 982 patients with newly diagnosed, previously untreated HCC, who were enrolled in the Guangdong Liver Cancer Cohort (GLCC) study between September 2013 and February 2017. Serum folate concentrations were measured using chemiluminescent microparticle immunoassay. Cox proportional hazards models were performed to estimate hazard ratios (HR) and 95 % CI by sex-specific quartile of serum folate. Compared with patients in the third quartile of serum folate, patients in the lowest quartile had significantly inferior LCSS (HR = 1·48; 95 % CI 1·05, 2·09) and OS (HR = 1·43; 95 % CI 1·03, 1·99) after adjustment for non-clinical and clinical prognostic factors. The associations were not significantly modified by sex, age at diagnosis, alcohol drinking status and Barcelona Clinic Liver Cancer (BCLC) stage. However, there were statistically significant interactions on both multiplicative and additive scale between serum folate and C-reactive protein (CRP) levels or smoking status and the associations of lower serum folate with worse LCSS and OS were only evident among patients with CRP > 3·0 mg/l or current smokers. An inverse association with LCSS were also observed among patients with liver damage score ≥3. These results suggest that lower serum folate concentrations at diagnosis are independently associated with worse HCC survival, most prominently among patients with systemic inflammation and current smokers. A future trial of folate supplementation seems to be promising in HCC patients with lower folate status.
The second home-made single stage accelerator mass spectrometer (SSAMS) system dedicated to radiocarbon (14C) measurements was built after the first SSAMS system was moved to Guangxi Normal University. With some improvements to the second SSAMS system, the performance has been improved. With the conditions of total ion energy of 200KeV, ions charge states of 1+ and helium as stripper gas, 14C measurements with precision of 0.5% and a background level of 0.5 pMC were achieved. Details of the system and the experimental performance are given here.
The micro-nano rough structure promotes the formation of superhydrophobic surfaces, while the formation of superoleophobic surfaces requires the support of re-entrant structures. Electrochemical etching and boiling water treatment methods were used to process the superoleophobic surface in the Al–Mg alloy substrate. The differences between the potential of the aluminum and the magnesium promoted the formation of the surface microstructure under the current stimulation, and the surface was formed into dense nanoscale needle-like coating after boiling water treatment. Scanning electron microscopy, energy dispersive spectroscopy, and contact angle measurement were performed to characterize the morphological features, chemical composition, and surface wettability, respectively. The so-prepared superoleophobic surfaces showed high contact angles and small sliding angles for water, ethylene glycol, and hexadecane. In addition, surface topography, reaction mechanism, and experimental parameters were also studied.