We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The heating effect of electromagnetic waves in ion cyclotron range of frequencies (ICRFs) in magnetic confinement fusion device is different in different plasma conditions. In order to evaluate the ICRF heating effect in different plasma conditions, we conducted a series of experiments and corresponding TRANSP simulations on the EAST tokamak. Both simulation and experimental results show that the effect of ICRF heating is poor at low core electron density. The decrease in electron density changes the left-handed electric field near the resonant layer, resulting in a significant decrease in the power absorbed by the hydrogen fundamental resonance. However, quite a few experiments must be performed in plasma conditions with low electron density. It is necessary to study how to make ICRF heating best in low electron density plasma. Through a series of simulation scans of the parallel refractive index (n//) of the ICRF antenna, it is concluded that the change of the ICRF antenna n// will lead to the change of the left-handed electric field, which will change the fundamental absorption of ICRF power by the hydrogen minority ions. Fully considering the coupling of ion cyclotron wave at the tokamak boundary and the absorption in the plasma core, optimizing the ICRF antenna structure and selecting appropriate parameters such as parallel refractive index, minority ion concentration, resonance layer position, plasma current and core electron temperature can ensure better heating effect in the ICRF heating experiments in the future EAST upgrade. These results have important implications for the enhancement of the auxiliary heating effect of EAST and other tokamaks.
A species of acanthocephalan collected from the hindgut of Larimichthys crocea was identified as Longicollum pagrosomi Yamaguti, 1935 based on morphological characteristics. The complete mitochondrial genome of this parasite was sequenced. The mitogenome exhibited a circular structure with a total length of 14 632 bp, containing 12 protein coding genes (PCGs), 2 ribosomal RNAs (rRNAs), 22 transfer RNAs (tRNAs) and 2 major non-coding regions. The most frequently used start codon was GTG, and the most abundant amino acid was valine. The phylogenetic analyses of the mitogenome using Bayesian inference and maximum likelihood methods showed that the genus Longicollum formed a sister clade to the genus Pomphorhynchus, supporting the monophyly of Pomphorhynchus. This study reported a new host for L. pagrosomi and revealed the first complete mitogenome sequence of the genus Longicollum.
Regenerative involution is crucial for renewing the mammary gland and maximizing milk production. However, the temporal profiles indicators of oxidative status during this phase are still unclear. In this study, Experiment 1 aimed to investigate the dynamic changes in indicators of oxidative status in plasma during regenerative involution. The dairy goats were dried off at 8 weeks (wk) before kidding (−8 wk, n = 14) or −12 wk (n = 6). The blood samples taken at −8, −7, −6, −5, −4, −3, −2, −1 wk, on the day for kidding (0 wk) and the first week after kidding (+1 wk, milk production 1.28 ± 0.31 kg per day). Experiment 2 aimed to investigate the dynamic changes in indicators of oxidative status in mammary cells. Seven selected goats were biopsied for tissue collection and cell isolation at −8, −4, −1, +1 wk (milk production 1.28 ± 0.31 kg per day), respectively. Plasma analysis in Experiment 1 showed an increase in reactive oxygen species (ROS) levels, peaking at −4 wk (P < 0.01). No significant differences were observed between the dry-off treatments (P = 0.36). The activity of superoxide dismutase (SOD) in plasma remained stable from −7 wk to the first week after kidding (+1 wk), while glutathione peroxidase (GSH-Px) activity peaked at −4 wk. An increased catalase activity was observed at +1 wk (P < 0.01), indicating its response to lactation. In Experiment 2, an increase in ROS levels in isolated mammary cells was observed at −4 wk, while SOD, GSH-Px, and malondialdehyde levels in tissue homogenates rose around kidding (P < 0.01). The dynamic change of the oxidative status suggests that targeted antioxidant strategies would be helpful for regenerative involution of mammary gland in ruminants.
This paper introduces a novel ray-tracing methodology for various gradient-index materials, particularly plasmas. The proposed approach utilizes adaptive-step Runge–Kutta integration to compute ray trajectories while incorporating an innovative rasterization step for ray energy deposition. By removing the requirement for rays to terminate at cell interfaces – a limitation inherent in earlier cell-confined approaches – the numerical formulation of ray motion becomes independent of specific domain geometries. This facilitates a unified and concise tracing method compatible with all commonly used curvilinear coordinate systems in laser–plasma simulations, which were previously unsupported or prohibitively complex under cell-confined frameworks. Numerical experiments demonstrate the algorithm’s stability and versatility in capturing diverse ray physics across reduced-dimensional planar, cylindrical and spherical coordinate systems. We anticipate that the rasterization-based approach will pave the way for the development of a generalized ray-tracing toolkit applicable to a broad range of fluid simulations and synthetic optical diagnostics.
Myocardial bridge contributes to chest pain, often accompanied by non-specific complaints.
Aims
Our study aims to determine somatic symptom disorder (SSD) prevalence in patients with myocardial bridge, investigating associated clinical and psychological features.
Method
In this prospective cross-sectional study, we enrolled 1357 participants (337 with and 1020 without myocardial bridge) from Shanghai Renji Hospital. The Somatic Symptom Scale-China questionnaire was used to assess SSD. Depressive and anxiety disorders were assessed by the Patient Health Questionnaire-9 (PHQ-9) and Generalised Anxiety Disorder-7 (GAD-7).
Results
The prevalence of SSD in the myocardial bridge group was 63.2%, higher than the group without myocardial bridge (53.8%). Patients with myocardial bridge were at an increased risk of SSD (odds ratio 1.362, 95% CI 1.026–1.809; P = 0.033). There were no differences in the mean PHQ-9 scores (3.2 ± 3.4 v. 3.2 ± 4.1; P = 0.751) or GAD-7 scores (2.5 ± 3.0 v. 2.3 ± 3.7; P = 0.143) between the two groups. Among patients with myocardial bridge, gender was the only independent risk factor for SSD. Women were 3.119 times more likely to experience SSD compared with men (95% CI 1.537–6.329; P = 0.002).
Conclusions
Our findings emphasise the high prevalence and severity of SSD among patients with myocardial bridge. The screening for SSD should be of particular concern, especially among female patients.
Bronze mou vessels appear in Shu tombs in south-west China during the Eastern Zhou period (c. 771–256 BC). Examination of these vessels reveals major changes in the supply of metal and alloying technology in the Shu State, throwing new light on the social impact of the Qin conquest and later unification of China.
The emotion regulation network (ERN) in the brain provides a framework for understanding the neuropathology of affective disorders. Although previous neuroimaging studies have investigated the neurobiological correlates of the ERN in major depressive disorder (MDD), whether patients with MDD exhibit abnormal functional connectivity (FC) patterns in the ERN and whether the abnormal FC in the ERN can serve as a therapeutic response signature remain unclear.
Methods
A large functional magnetic resonance imaging dataset comprising 709 patients with MDD and 725 healthy controls (HCs) recruited across five sites was analyzed. Using a seed-based FC approach, we first investigated the group differences in whole-brain resting-state FC of the 14 ERN seeds between participants with and without MDD. Furthermore, an independent sample (45 MDD patients) was used to evaluate the relationship between the aforementioned abnormal FC in the ERN and symptom improvement after 8 weeks of antidepressant monotherapy.
Results
Compared to the HCs, patients with MDD exhibited aberrant FC between 7 ERN seeds and several cortical and subcortical areas, including the bilateral middle temporal gyrus, bilateral occipital gyrus, right thalamus, calcarine cortex, middle frontal gyrus, and the bilateral superior temporal gyrus. In an independent sample, these aberrant FCs in the ERN were negatively correlated with the reduction rate of the HAMD17 score among MDD patients.
Conclusions
These results might extend our understanding of the neurobiological underpinnings underlying unadaptable or inflexible emotional processing in MDD patients and help to elucidate the mechanisms of therapeutic response.
A well-known person fit statistic in the item response theory (IRT) literature is the \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$l_{z}$$\end{document} statistic (Drasgow et al. in Br J Math Stat Psychol 38(1):67-86, 1985). Snijders (Psychometrika 66(3):331-342, 2001) derived \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$l_{z}^{*}$$\end{document}, which is the asymptotically correct version of \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$l_{z}$$\end{document} when the ability parameter is estimated. However, both statistics and other extensions later developed concern either only the unidimensional IRT models or multidimensional models that require a joint estimate of latent traits across all the dimensions. Considering a marginalized maximum likelihood ability estimator, this paper proposes \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$l_{zt}$$\end{document} and \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$l_{zt}^{*}$$\end{document}, which are extensions of \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$l_{z}$$\end{document} and \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$l_{z}^{*}$$\end{document}, respectively, for the Rasch testlet model. The computation of \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$l_{zt}^{*}$$\end{document} relies on several extensions of the Lord-Wingersky algorithm (1984) that are additional contributions of this paper. Simulation results show that \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$l_{zt}^{*}$$\end{document} has close-to-nominal Type I error rates and satisfactory power for detecting aberrant responses. For unidimensional models, \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$l_{zt}$$\end{document} and \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$l_{zt}^{*}$$\end{document} reduce to \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$l_{z}$$\end{document} and \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$l_{z}^{*}$$\end{document}, respectively, and therefore allows for the evaluation of person fit with a wider range of IRT models. A real data application is presented to show the utility of the proposed statistics for a test with an underlying structure that consists of both the traditional unidimensional component and the Rasch testlet component.
Our study aimed to develop and validate a nomogram to assess talaromycosis risk in hospitalized HIV-positive patients. Prediction models were built using data from a multicentre retrospective cohort study in China. On the basis of the inclusion and exclusion criteria, we collected data from 1564 hospitalized HIV-positive patients in four hospitals from 2010 to 2019. Inpatients were randomly assigned to the training or validation group at a 7:3 ratio. To identify the potential risk factors for talaromycosis in HIV-infected patients, univariate and multivariate logistic regression analyses were conducted. Through multivariate logistic regression, we determined ten variables that were independent risk factors for talaromycosis in HIV-infected individuals. A nomogram was developed following the findings of the multivariate logistic regression analysis. For user convenience, a web-based nomogram calculator was also created. The nomogram demonstrated excellent discrimination in both the training and validation groups [area under the ROC curve (AUC) = 0.883 vs. 0.889] and good calibration. The results of the clinical impact curve (CIC) analysis and decision curve analysis (DCA) confirmed the clinical utility of the model. Clinicians will benefit from this simple, practical, and quantitative strategy to predict talaromycosis risk in HIV-infected patients and can implement appropriate interventions accordingly.
The self-generated magnetic field in three-dimensional (3-D) single-mode ablative Rayleigh–Taylor instability (ARTI) relevant to the acceleration phase of a direct-drive inertial confinement fusion (ICF) implosion is investigated. It is found that stronger magnetic fields up to a few thousand teslas can be generated by 3-D ARTI rather than by its two-dimensional (2-D) counterpart. The Nernst effects significantly alter the magnetic field convection and amplify the magnetic fields. The magnetic field of thousands of teslas yields the Hall parameter of the order of unity, leading to profound magnetized heat flux modification. While the magnetic field significantly accelerates the bubble growth in the short-wavelength 2-D modes through modifying the heat fluxes, the magnetic field mostly accelerates the spike growth but has little influence on the bubble growth in 3-D ARTI. The accelerated growth of spikes in 3-D ARTI is expected to enhance material mixing and degrade ICF implosion performance. This work is focused on a regime relevant to direct-drive ICF parameters at the National Ignition Facility, and it also covers a range of key parameters that are relevant to other ICF designs and hydrodynamic/astrophysical scenarios.
This study aimed to analyse the spatial and temporal patterns of disease burden attributed to high BMI (DB-hBMI) from 1990 to 2019 in Belt and Road Initiative (BRI) countries, in light of increasing hBMI prevalence worldwide.
Design:
The study was a secondary analysis of Global Burden of Disease 2019 (GBD 2019) that analysed (using Joinpoint regression analysis) numbers and the age-standardised rate of mortality and disability-adjusted life years (DALY) of hBMI-induced diseases and their trends from 1990 to 2019 and in the final decade.
Setting:
GBD 2019 study data for BRI countries were categorised by country, age, gender and disease.
Participants:
GBD 2019 data were used to analyse DB-hBMI in BRI countries.
Results:
In 2019, China, India and Russia reported the highest mortality and DALY among BRI countries. From 1990 to 2019, the age-standardised DALY increased in Southeast Asia and South Asia, whereas many European countries saw declines. Notably, Bangladesh, Nepal and Vietnam showed the steepest increases, with average annual percentage change (AAPC) values of 4·42 %, 4·19 % and 4·28 %, respectively (all P < 0·05). In contrast, Israel, Slovenia and Poland experienced significant reductions, with AAPC values of –1·70 %, –1·63 % and –1·58 %, respectively (all P < 0·05). The most rapid increases among males were seen in Vietnam, Nepal and Bangladesh, while Jordan, Poland and Slovenia recorded the fastest declines among females. Across most BRI countries, the burden of diabetes and kidney diseases related to hBMI showed a significant uptrend.
Conclusion:
DB-hBMI varies significantly by region, age, gender and disease type across BRI countries. It can pose a substantial threat to public health.
Shear-induced migration of elongated micro-swimmers exhibiting anisotropic Brownian diffusion at a population scale is investigated analytically in this work. We analyse the steady motion of confined ellipsoidal micro-swimmers subject to coupled diffusion in a general setting within a continuum homogenisation framework, as an extension of existing studies on macro-transport processes, by allowing for the direct coupling of convection and diffusion in local and global spaces. The analytical solutions are validated successfully by comparison with numerical results from Monte Carlo simulations. Subsequently, we demonstrate from the probability perspective that symmetric actuation does not yield net vertical polarisation in a horizontal flow, unless non-spherical shapes, external fields or direct coupling effects are harnessed to generate steady locomotion. Coupled diffusivities modify remarkably the drift velocity and vertical migration of motile micro-swimmers exposed to fluid shear. The interplay between stochastic swimming and preferential alignment could explain the diverse concentration and orientation distributions, including rheological formations of depletion layers, centreline focusing and surface accumulation. Results of the analytical study shed light on unravelling peculiar self-propulsion strategies and dispersion dynamics in active-matter systems, with implications for various transport problems arising from the fluctuating shape, size and other external or inter-particle interactions of swimmers in confined environments.
This study examined the fermentation dynamics, bacterial community composition and bacterial β-carotene synthesis in alfalfa that was ensiled for 3, 15, 45 and 90 days without additives (CON), or with a chemical agent (propionic acid, PA); or a combination of PA and squalene, SQPA). The results showed that silage treated with PA had a lower (P < 0.01) pH value than the CON silage in the early ensiling phase (3–15 days). Meanwhile, silage treated with PA had the highest contents of lactic acid, acetic acid and PA after 90 days of ensiling (P < 0.01). The β-carotene in alfalfa was lost seriously in the initial ensiling phase (3 days) and epiphytic Pantoea agglomerans with the ability to produce β-carotene became extinct. With the extension of ensiling time, the loss of β-carotene was alleviated in all silages. PA and SQPA not only lowered bacterial diversity and simplified bacterial networks but also facilitated the emergence of new β-carotene-producing bacteria. The metabolic function prediction indicated that β-carotene synthesis tended to decrease initially and subsequently increase during ensiling. Furthermore, the variance of enzymes involved in the bacterial synthesis of β-carotene in silages was influenced by PA, SQPA and ensiling time. In summary, the impact of solely adding PA demonstrated superior effects on the fermentation quality of alfalfa silage compared to the effects observed with SQPA. Throughout the ensiling of alfalfa, the succession of different β-carotene-producing bacteria resulted in fluctuations in the levels of β-carotene.
Trauma is a significant health issue that not only leads to immediate death in many cases but also causes severe complications, such as sepsis, thrombosis, haemorrhage, acute respiratory distress syndrome and traumatic brain injury, among trauma patients. Target protein identification technology is a vital technique in the field of biomedical research, enabling the study of biomolecular interactions, drug discovery and disease treatment. It plays a crucial role in identifying key protein targets associated with specific diseases or biological processes, facilitating further research, drug design and the development of treatment strategies. The application of target protein technology in biomarker detection enables the timely identification of newly emerging infections and complications in trauma patients, facilitating expeditious medical interventions and leading to reduced post-trauma mortality rates and improved patient prognoses. This review provides an overview of the current applications of target protein identification technology in trauma-related complications and provides a brief overview of the current target protein identification technology, with the aim of reducing post-trauma mortality, improving diagnostic efficiency and prognostic outcomes for patients.
Resilience research has long sought to understand how factors at the child, family, school, community, and societal levels shape adaptation in the face of adversities such as poverty and war. In this article we reflect on three themes that may prove to be useful for future resilience research. First is the idea that mental and physical health can sometimes diverge, even in response to the same social process. A better understanding of explanations for this divergence will have both theoretical and public health implications when it comes to efforts to promote resilience. Second is that more recent models of stress suggest that stress can accelerate aging. Thus, we suggest that research on resilience may need to also consider how resilience strategies may need to be developed in an accelerated fashion to be effective. Third, we suggest that if psychological resilience interventions can be conducted in conjunction with efforts to enact system-level changes targeted at adversities, this may synergize the impact that any single intervention can have, creating a more coordinated and effective set of approaches for promoting resilience in young people who confront adversity in life.
There are currently at least 50 million dementia patients worldwide, and this number is expected to reach 152 million by 2050, of which about 60-70% will be Alzheimer’s patients. The companion robot based on deep learning is a product of the development of artificial intelligence technology, which is of great significance to the physical and mental health of the elderly, so it is used in the research on the treatment of Alzheimer’s patients.
Subjects and Methods
100 patients with Alzheimer’s disease in a hospital were selected for the study, and 50 patients were randomly divided into experimental group and control group. In the experiment, 50 patients with Alzheimer in the experimental group used a companion robot based on deep learning for auxiliary treatment while carrying out daily treatment. The control group of 50 patients did not receive any adjuvant therapy in addition to daily treatment. After three months of treatment, the study used the 3D-CAM and the mini–mental state examination (MMSE) to collect the treatment status of all patients, and used the SPSS23.0 statistical software to statistically analyze the collected data.
Results
After statistical analysis, the results of the two groups were obtained. The scores of 3D-CAM and MMSE in the experimental group were significantly higher than those in the control group and the difference was statistically significant.
Conclusions
Companion robots based on deep learning are helpful in the treatment of Alzheimer’s patients. They can improve the therapeutic effect and have certain social value.
Acknowledgement
The Fundamental Research Funds in Heilongjiang Provincial Universities (No.135309356); Qiqihar University Young Teachers’ Scientific Research Initiation Support Program (No.2012k-M17).
To analyse the comparative clinical outcomes and clinicopathological significance of vocal fold leukoplakia lesions treated by appearance classification and traditional methods.
Method
A total of 1442 vocal fold leukoplakia patients were enrolled. Group A patients were treated according to appearance classification and Group B patients were treated according to traditional methods.
Results
In Group A, 24.4, 14.9 and 60.6 per cent of patients had grade I, II and III dysplasia, respectively. Grade I dysplasia (63.4 per cent) was more than twice as frequent in Group B patients than in Group A patients, while grade II dysplasia (20.4 per cent) and grade III dysplasia (16.2 per cent) were significantly less frequent in Group B patients than in Group A patients (p = 0.000). There was a significant correlation between vocal fold leukoplakia appearance and the degree of dysplasia (p = 0.000). The recurrence and malignant transformation rates (17.6 and 31 per cent, respectively) in Group B were significantly greater than those in Group A (10.8 and 25.9 per cent, respectively) (p = 0.000).
Conclusion
Vocal fold leukoplakia appearance classification is useful for guiding treatment decision-making and could help to improve therapeutic accuracy.
Environment-induced epigenetics are involved in diapause regulation, but the molecular mechanism that epigenetically couples nutrient metabolism to diapause regulation remains unclear. In this study, we paid special attention to the significant differences in the level of N6-adenosine methylation (m6A) of dihydroxyacetone phosphate acyltransferase (DHAPAT) and phosphatidate phosphatase (PAP) genes in the lipid metabolism pathway of the bivoltine silkworm (Bombyx mori) strain Qiufeng developed from eggs incubated at a normal temperature (QFHT, diapause egg producer) compared to those from eggs incubated at a low temperature (QFLT, non-diapause egg producer). We knocked down DHAPAT in the pupal stage of the QFLT group, resulting in the non-diapause destined eggs becoming diapausing eggs. In the PAP knockdown group, the colour of the non-diapause destined eggs changed from light yellow to pink 3 days after oviposition, but they hatched as normal. Moreover, we validated that YTHDF3 binds to m6A-modified DHAPAT and PAP mRNAs to promote their stability and translation. These results suggest that RNA m6A methylation participates in the diapause regulation of silkworm by changing the expression levels of DHAPAT and PAP and reveal that m6A epigenetic modification can be combined with a lipid metabolism signal pathway to participate in the regulation of insect diapause traits, which provides a clearer image for exploring the physiological basis of insect diapause.
This study investigated, and discusses the integration of, the shift-and-persist (SAP) and skin-deep resilience (SDR) theories. The SAP theory states that the combination of shifting (adjusting oneself to stressful situations through strategies like emotion regulation) and persisting (enduring adversity with strength by finding meaning and maintaining optimism) will be beneficial to physical health in children experiencing adversity. The SDR theory states that high striving/self-control will be beneficial to mental health but detrimental to physical health among those confronting adversity. This study investigated 308 children ages 8–17 experiencing the adversity of a chronic illness (asthma). SAP and SDR (striving/self-control) were assessed via questionnaires, and physical health (asthma symptoms, inflammatory profiles), mental health (anxiety/depression, emotional functioning), and behavioral (medication adherence, activity limitations, collaborative relationships with providers) outcomes were measured cross-sectionally. SAP was associated with better physical health, whereas SDR was associated with worse physical health. Both were associated with better mental health. Only SDR was associated with better behavioral outcomes. Implications of findings and discussion of how to integrate these theories are provided. We suggest that future interventions might seek to cultivate both SAP and SDR to promote overall better health and well-being across multiple domains in children experiencing adversity.