We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Patients with posttraumatic stress disorder (PTSD) exhibit smaller regional brain volumes in commonly reported regions including the amygdala and hippocampus, regions associated with fear and memory processing. In the current study, we have conducted a voxel-based morphometry (VBM) meta-analysis using whole-brain statistical maps with neuroimaging data from the ENIGMA-PGC PTSD working group.
Methods
T1-weighted structural neuroimaging scans from 36 cohorts (PTSD n = 1309; controls n = 2198) were processed using a standardized VBM pipeline (ENIGMA-VBM tool). We meta-analyzed the resulting statistical maps for voxel-wise differences in gray matter (GM) and white matter (WM) volumes between PTSD patients and controls, performed subgroup analyses considering the trauma exposure of the controls, and examined associations between regional brain volumes and clinical variables including PTSD (CAPS-4/5, PCL-5) and depression severity (BDI-II, PHQ-9).
Results
PTSD patients exhibited smaller GM volumes across the frontal and temporal lobes, and cerebellum, with the most significant effect in the left cerebellum (Hedges’ g = 0.22, pcorrected = .001), and smaller cerebellar WM volume (peak Hedges’ g = 0.14, pcorrected = .008). We observed similar regional differences when comparing patients to trauma-exposed controls, suggesting these structural abnormalities may be specific to PTSD. Regression analyses revealed PTSD severity was negatively associated with GM volumes within the cerebellum (pcorrected = .003), while depression severity was negatively associated with GM volumes within the cerebellum and superior frontal gyrus in patients (pcorrected = .001).
Conclusions
PTSD patients exhibited widespread, regional differences in brain volumes where greater regional deficits appeared to reflect more severe symptoms. Our findings add to the growing literature implicating the cerebellum in PTSD psychopathology.
Despite advances in antiretroviral treatment (ART), human immunodeficiency virus (HIV) can detrimentally affect everyday functioning. Neurocognitive impairment (NCI) and current depression are common in people with HIV (PWH) and can contribute to poor functional outcomes, but potential synergies between the two conditions are less understood. Thus, the present study aimed to compare the independent and combined effects of NCI and depression on everyday functioning in PWH. We predicted worse functional outcomes with comorbid NCI and depression than either condition alone.
Methods:
PWH enrolled at the UCSD HIV Neurobehavioral Research Program were assessed for neuropsychological performance, depression severity (≤minimal, mild, moderate, or severe; Beck Depression Inventory-II), and self-reported everyday functioning.
Results:
Participants were 1,973 PWH (79% male; 66% racial/ethnic minority; Age: M = 48.6; Education: M = 13.0, 66% AIDS; 82% on ART; 42% with NCI; 35% BDI>13). ANCOVA models found effects of NCI and depression symptom severity on all functional outcomes (ps < .0001). With NCI and depression severity included in the same model, both remained significant (ps < .0001), although the effects of each were attenuated, and yielded better model fit parameters (i.e., lower AIC values) than models with only NCI or only depression.
Conclusions:
Consistent with prior literature, NCI and depression had independent effects on everyday functioning in PWH. There was also evidence for combined effects of NCI and depression, such that their comorbidity had a greater impact on functioning than either alone. Our results have implications for informing future interventions to target common, comorbid NCI and depressed mood in PWH and thus reduce HIV-related health disparities.
We present the first results from a new backend on the Australian Square Kilometre Array Pathfinder, the Commensal Realtime ASKAP Fast Transient COherent (CRACO) upgrade. CRACO records millisecond time resolution visibility data, and searches for dispersed fast transient signals including fast radio bursts (FRB), pulsars, and ultra-long period objects (ULPO). With the visibility data, CRACO can localise the transient events to arcsecond-level precision after the detection. Here, we describe the CRACO system and report the result from a sky survey carried out by CRACO at 110-ms resolution during its commissioning phase. During the survey, CRACO detected two FRBs (including one discovered solely with CRACO, FRB 20231027A), reported more precise localisations for four pulsars, discovered two new RRATs, and detected one known ULPO, GPM J1839 $-$10, through its sub-pulse structure. We present a sensitivity calibration of CRACO, finding that it achieves the expected sensitivity of 11.6 Jy ms to bursts of 110 ms duration or less. CRACO is currently running at a 13.8 ms time resolution and aims at a 1.7 ms time resolution before the end of 2024. The planned CRACO has an expected sensitivity of 1.5 Jy ms to bursts of 1.7 ms duration or less and can detect $10\times$ more FRBs than the current CRAFT incoherent sum system (i.e. 0.5 $-$2 localised FRBs per day), enabling us to better constrain the models for FRBs and use them as cosmological probes.
The axisymmetric nozzle mechanism is the core part for thrust vectoring of aero engine, which contains complex rigid-flexible coupled multibody system with joints clearance and significantly reduces the efficiency in modeling and calculation, therefore the kinematics and dynamics analysis of axisymmetric vectoring nozzle mechanism based on deep neural network is proposed. The deep neural network model of the axisymmetric vector nozzle is established according to the limited training data from the physical dynamic model and then used to predict the kinematics and dynamics response of the axisymmetric vector nozzle. This study analyses the effects of joint clearance on the kinematics and dynamics of the axisymmetric vector nozzle mechanism by a data-driven model. It is found that the angular acceleration of the expanding blade and the driving force are mostly affected by joint clearance followed by the angle, angular velocity and position of the expanding blade. Larger joint clearance results in more pronounced fluctuations of the dynamic response of the mechanism, which is due to the greater relative velocity and contact force between the bushing and the pin. Since axisymmetric vector nozzles are highly complex nonlinear systems, traditional numerical methods of dynamics are extremely time-consuming. Our work indicates that the data-driven approach greatly reduces the computational cost while maintaining accuracy, and can be used for rapid evaluation and iterative computation of complex multibody dynamics of engine nozzle mechanism.
In this paper, a brand-new adaptive fault-tolerant non-affine integrated guidance and control method based on reinforcement learning is proposed for a class of skid-to-turn (STT) missile. Firstly, considering the non-affine characteristics of the missile, a new non-affine integrated guidance and control (NAIGC) design model is constructed. For the NAIGC system, an adaptive expansion integral system is introduced to address the issue of challenging control brought on by the non-affine form of the control signal. Subsequently, the hyperbolic tangent function and adaptive boundary estimation are utilised to lessen the jitter due to disturbances in the control system and the deviation caused by actuator failures while taking into account the uncertainty in the NAIGC system. Importantly, actor-critic is introduced into the control framework, where the actor network aims to deal with the multiple uncertainties of the subsystem and generate the control input based on the critic results. Eventually, not only is the stability of the NAIGC closed-loop system demonstrated using Lyapunov theory, but also the validity and superiority of the method are verified by numerical simulations.
Nonlinear simulations of Alfvén modes (AMs) driven by energetic particles (EPs) in the presence of turbulence are performed with the gyrokinetic particle-in-cell code ORB5. The AMs carry a heat flux, and consequently they nonlinearly modify the plasma temperature profiles. The isolated effect of this modification on the dynamics of turbulence is studied by means of electrostatic simulations. We find that turbulence is reduced when the profiles relaxed by the AM are used, with respect to the simulation where the unperturbed profiles are used. This is an example of indirect interaction of EPs and turbulence. First, an analytic magnetic equilibrium with circular concentric flux surfaces is considered as a simplified example for this study. Then, an application to an experimentally relevant case of ASDEX Upgrade is discussed.
TDuring COVID-19 pandemic, it was noticed that it was students who were mostly affected by the changes that aroused because of the pandemic. The interesting part is whether students’ well-being could be associated with their fields of study as well as coping strategies.
Objectives
In this study, we aimed to assess 1) the mental health of students from nine countries with a particular focus on depression, anxiety, and stress levels and their fields of study, 2) the major coping strategies of students after one year of the COVID-19 pandemic.
Methods
We conducted an anonymous online cross-sectional survey on 12th April – 1st June 2021 that was distributed among the students from Poland, Mexico, Egypt, India, Pakistan, China, Vietnam, Philippines, and Bangladesh. To measure the emotional distress, we used the Depression, Anxiety, and Stress Scale-21 (DASS-21), and to identify the major coping strategies of students - the Brief-COPE.
Results
We gathered 7219 responses from students studying five major studies: medical studies (N=2821), social sciences (N=1471), technical sciences (N=891), artistic/humanistic studies (N=1094), sciences (N=942). The greatest intensity of depression (M=18.29±13.83; moderate intensity), anxiety (M=13.13±11.37; moderate intensity ), and stress (M=17.86±12.94; mild intensity) was observed among sciences students. Medical students presented the lowest intensity of all three components - depression (M=13.31±12.45; mild intensity), anxiety (M=10.37±10.57; moderate intensity), and stress (M=13.65±11.94; mild intensity). Students of all fields primarily used acceptance and self-distraction as their coping mechanisms, while the least commonly used were self-blame, denial, and substance use. The group of coping mechanisms the most frequently used was ‘emotional focus’. Medical students statistically less often used avoidant coping strategies compared to other fields of study. Substance use was only one coping mechanism that did not statistically differ between students of different fields of study. Behavioral disengagement presented the highest correlation with depression (r=0.54), anxiety (r=0.48), and stress (r=0.47) while religion presented the lowest positive correlation with depression (r=0.07), anxiety (r=0.14), and stress (r=0.11).
Conclusions
1) The greatest intensity of depression, anxiety, and stress was observed among sciences students, while the lowest intensity of those components was found among students studying medicine.
2) Not using avoidant coping strategies might be associated with lower intensity of all DASS components among students.
3) Behavioral disengagement might be strongly associated with greater intensity of depression, anxiety, and stress among students.
4) There was no coping mechanism that provided the alleviation of emotional distress in all the fields of studies of students.
With the advent of deep, all-sky radio surveys, the need for ancillary data to make the most of the new, high-quality radio data from surveys like the Evolutionary Map of the Universe (EMU), GaLactic and Extragalactic All-sky Murchison Widefield Array survey eXtended, Very Large Array Sky Survey, and LOFAR Two-metre Sky Survey is growing rapidly. Radio surveys produce significant numbers of Active Galactic Nuclei (AGNs) and have a significantly higher average redshift when compared with optical and infrared all-sky surveys. Thus, traditional methods of estimating redshift are challenged, with spectroscopic surveys not reaching the redshift depth of radio surveys, and AGNs making it difficult for template fitting methods to accurately model the source. Machine Learning (ML) methods have been used, but efforts have typically been directed towards optically selected samples, or samples at significantly lower redshift than expected from upcoming radio surveys. This work compiles and homogenises a radio-selected dataset from both the northern hemisphere (making use of Sloan Digital Sky Survey optical photometry) and southern hemisphere (making use of Dark Energy Survey optical photometry). We then test commonly used ML algorithms such as k-Nearest Neighbours (kNN), Random Forest, ANNz, and GPz on this monolithic radio-selected sample. We show that kNN has the lowest percentage of catastrophic outliers, providing the best match for the majority of science cases in the EMU survey. We note that the wider redshift range of the combined dataset used allows for estimation of sources up to $z = 3$ before random scatter begins to dominate. When binning the data into redshift bins and treating the problem as a classification problem, we are able to correctly identify $\approx$76% of the highest redshift sources—sources at redshift $z > 2.51$—as being in either the highest bin ($z > 2.51$) or second highest ($z = 2.25$).
The target backsheath field acceleration mechanism is one of the main mechanisms of laser-driven proton acceleration (LDPA) and strongly depends on the comprehensive performance of the ultrashort ultra-intense lasers used as the driving sources. The successful use of the SG-II Peta-watt (SG-II PW) laser facility for LDPA and its applications in radiographic diagnoses have been manifested by the good performance of the SG-II PW facility. Recently, the SG-II PW laser facility has undergone extensive maintenance and a comprehensive technical upgrade in terms of the seed source, laser contrast and terminal focus. LDPA experiments were performed using the maintained SG-II PW laser beam, and the highest cutoff energy of the proton beam was obviously increased. Accordingly, a double-film target structure was used, and the maximum cutoff energy of the proton beam was up to 70 MeV. These results demonstrate that the comprehensive performance of the SG-II PW laser facility was improved significantly.
As a typical plasma-based optical element that can sustain ultra-high light intensity, plasma density gratings driven by intense laser pulses have been extensively studied for wide applications. Here, we show that the plasma density grating driven by two intersecting driver laser pulses is not only nonuniform in space but also varies over time. Consequently, the probe laser pulse that passes through such a dynamic plasma density grating will be depolarized, that is, its polarization becomes spatially and temporally variable. More importantly, the laser depolarization may spontaneously take place for crossed laser beams if their polarization angles are arranged properly. The laser depolarization by a dynamic plasma density grating may find application in mitigating parametric instabilities in laser-driven inertial confinement fusion.
We present the Widefield ASKAP L-band Legacy All-sky Blind surveY (WALLABY) Pilot Phase I Hi kinematic models. This first data release consists of Hi observations of three fields in the direction of the Hydra and Norma clusters, and the NGC 4636 galaxy group. In this paper, we describe how we generate and publicly release flat-disk tilted-ring kinematic models for 109/592 unique Hi detections in these fields. The modelling method adopted here—which we call the WALLABY Kinematic Analysis Proto-Pipeline (WKAPP) and for which the corresponding scripts are also publicly available—consists of combining results from the homogeneous application of the FAT and 3DBarolo algorithms to the subset of 209 detections with sufficient resolution and $S/N$ in order to generate optimised model parameters and uncertainties. The 109 models presented here tend to be gas rich detections resolved by at least 3–4 synthesised beams across their major axes, but there is no obvious environmental bias in the modelling. The data release described here is the first step towards the derivation of similar products for thousands of spatially resolved WALLABY detections via a dedicated kinematic pipeline. Such a large publicly available and homogeneously analysed dataset will be a powerful legacy product that that will enable a wide range of scientific studies.
We present WALLABY pilot data release 1, the first public release of H i pilot survey data from the Wide-field ASKAP L-band Legacy All-sky Blind Survey (WALLABY) on the Australian Square Kilometre Array Pathfinder. Phase 1 of the WALLABY pilot survey targeted three $60\,\mathrm{deg}^{2}$ regions on the sky in the direction of the Hydra and Norma galaxy clusters and the NGC 4636 galaxy group, covering the redshift range of $z \lesssim 0.08$. The source catalogue, images and spectra of nearly 600 extragalactic H i detections and kinematic models for 109 spatially resolved galaxies are available. As the pilot survey targeted regions containing nearby group and cluster environments, the median redshift of the sample of $z \approx 0.014$ is relatively low compared to the full WALLABY survey. The median galaxy H i mass is $2.3 \times 10^{9}\,{\rm M}_{{\odot}}$. The target noise level of $1.6\,\mathrm{mJy}$ per 30′′ beam and $18.5\,\mathrm{kHz}$ channel translates into a $5 \sigma$ H i mass sensitivity for point sources of about $5.2 \times 10^{8} \, (D_{\rm L} / \mathrm{100\,Mpc})^{2} \, {\rm M}_{{\odot}}$ across 50 spectral channels (${\approx} 200\,\mathrm{km \, s}^{-1}$) and a $5 \sigma$ H i column density sensitivity of about $8.6 \times 10^{19} \, (1 + z)^{4}\,\mathrm{cm}^{-2}$ across 5 channels (${\approx} 20\,\mathrm{km \, s}^{-1}$) for emission filling the 30′′ beam. As expected for a pilot survey, several technical issues and artefacts are still affecting the data quality. Most notably, there are systematic flux errors of up to several 10% caused by uncertainties about the exact size and shape of each of the primary beams as well as the presence of sidelobes due to the finite deconvolution threshold. In addition, artefacts such as residual continuum emission and bandpass ripples have affected some of the data. The pilot survey has been highly successful in uncovering such technical problems, most of which are expected to be addressed and rectified before the start of the full WALLABY survey.
The great demographic pressure brings tremendous volume of beef demand. The key to solve this problem is the growth and development of Chinese cattle. In order to find molecular markers conducive to the growth and development of Chinese cattle, sequencing was used to determine the position of copy number variations (CNVs), bioinformatics analysis was used to predict the function of ZNF146 gene, real-time fluorescent quantitative polymerase chain reaction (qPCR) was used for CNV genotyping and one-way analysis of variance was used for association analysis. The results showed that there exists CNV in Chr 18: 47225201-47229600 (5.0.1 version) of ZNF146 gene through the early sequencing results in the laboratory and predicted ZNF146 gene was expressed in liver, skeletal muscle and breast cells, and was amplified or overexpressed in pancreatic cancer, which promoted the development of tumour through bioinformatics. Therefore, it is predicted that ZNF146 gene affects the proliferation of muscle cells, and then affects the growth and development of cattle. Furthermore, CNV genotyping of ZNF146 gene was three types (deletion type, normal type and duplication type) by Real-time fluorescent quantitative PCR (qPCR). The association analysis results showed that ZNF146-CNV was significantly correlated with rump length of Qinchuan cattle, hucklebone width of Jiaxian red cattle and heart girth of Yunling cattle. From the above results, ZNF146-CNV had a significant effect on growth traits, which provided an important candidate molecular marker for growth and development of Chinese cattle.
We report the experimental results of the commissioning phase in the 10 PW laser beamline of the Shanghai Superintense Ultrafast Laser Facility (SULF). The peak power reaches 2.4 PW on target without the last amplifying during the experiment. The laser energy of 72 ± 9 J is directed to a focal spot of approximately 6 μm diameter (full width at half maximum) in 30 fs pulse duration, yielding a focused peak intensity around 2.0 × 1021 W/cm2. The first laser-proton acceleration experiment is performed using plain copper and plastic targets. High-energy proton beams with maximum cut-off energy up to 62.5 MeV are achieved using copper foils at the optimum target thickness of 4 μm via target normal sheath acceleration. For plastic targets of tens of nanometers thick, the proton cut-off energy is approximately 20 MeV, showing ring-like or filamented density distributions. These experimental results reflect the capabilities of the SULF-10 PW beamline, for example, both ultrahigh intensity and relatively good beam contrast. Further optimization for these key parameters is underway, where peak laser intensities of 1022–1023 W/cm2 are anticipated to support various experiments on extreme field physics.
Background: Despite a higher prevalence of traumatic spinal cord injury (TSCI) amongst Canadian Indigenous peoples, there is a paucity of studies focused on Indigenous TSCI. We present the first Canada-wide study comparing TSCI amongst Canadian Indigenous and non-Indigenous peoples. Methods: This study is a retrospective analysis of prospectively-collected TSCI data from the Rick Hansen Spinal Cord Injury Registry (RHSCIR) from 2004-2019. We divided participants into Indigenous and non-Indigenous cohorts and compared them with respect to demographics, injury mechanism, level, severity, and outcomes. Results: Compared with non-Indigenous patients, Indigenous patients were younger, more female, less likely to have higher education, and less likely to be employed. The mechanism of injury was more likely due to assault or transportation-related trauma in the Indigenous group. The length of stay for Indigenous patients was longer. Indigenous patients were more likely to be discharged to a rural setting, less likely to be discharged home, and more likely to be unemployed following injury. Conclusions: Our results suggest that more resources need to be dedicated for transitioning Indigenous patients sustaining a TSCI to community living and for supporting these patients in their home communities. A focus on resources and infrastructure for Indigenous patients by engagement with Indigenous communities is needed.
The incidence of scarlet fever has increased dramatically in recent years in Chongqing, China, but there has no effective method to forecast it. This study aimed to develop a forecasting model of the incidence of scarlet fever using a seasonal autoregressive integrated moving average (SARIMA) model. Monthly scarlet fever data between 2011 and 2019 in Chongqing, China were retrieved from the Notifiable Infectious Disease Surveillance System. From 2011 to 2019, a total of 5073 scarlet fever cases were reported in Chongqing, the male-to-female ratio was 1.44:1, children aged 3–9 years old accounted for 81.86% of the cases, while 42.70 and 42.58% of the reported cases were students and kindergarten children, respectively. The data from 2011 to 2018 were used to fit a SARIMA model and data in 2019 were used to validate the model. The normalised Bayesian information criterion (BIC), the coefficient of determination (R2) and the root mean squared error (RMSE) were used to evaluate the goodness-of-fit of the fitted model. The optimal SARIMA model was identified as (3, 1, 3) (3, 1, 0)12. The RMSE and mean absolute per cent error (MAPE) were used to assess the accuracy of the model. The RMSE and MAPE of the predicted values were 19.40 and 0.25 respectively, indicating that the predicted values matched the observed values reasonably well. Taken together, the SARIMA model could be employed to forecast scarlet fever incidence trend, providing support for scarlet fever control and prevention.
Frequent freezing injury greatly influences winter wheat production; thus, effective prevention and a command of agricultural production are vital. The freezing injury monitoring method integrated with ‘3S’ (geographic information systems (GIS), global positioning system (GPS) and remote sensing (RS)) technology has an unparalleled advantage. Using HuanJing (HJ)-1A/1B satellite images of a winter wheat field in Shanxi Province, China plus a field survey, crop types and winter wheat planting area were identified through repeated visual interpretations of image information and spatial analyses conducted in GIS. Six vegetation indices were extracted from processed HJ-1A/1B satellite images to determine whether the winter wheat suffered from freezing injury and its degree of severity and recovery, using change vector analysis (CVA), the freeze injury representative vegetation index and the combination of the two methods, respectively. Accuracy of the freezing damage classification results was verified by determining the impact of freezing damage on yield and quantitative analysis. The CVA and the change of normalized difference vegetation index (ΔNDVI) monitoring results were different so a comprehensive analysis of the combination of CVA and ΔNDVI was performed. The area with serious freezing injury covered 0.9% of the total study area, followed by the area of no freezing injury (3.5%), moderate freezing injury (10.2%) and light freezing injury (85.4%). Of the moderate and serious freezing injury areas, 0.2% did not recover; 1.2% of the no freezing injury and light freezing injury areas showed optimal recovery, 15.6% of the light freezing injury and moderate freezing injury areas showed poor recovery, and the remaining areas exhibited general recovery.
The early identification and prediction of hand-foot-and-mouth disease (HFMD) play an important role in the disease prevention and control. However, suitable models are different in regions due to the differences in geography, social economy factors. We collected data associated with daily reported HFMD cases and weather factors of Zibo city in 2010~2019 and used the generalised additive model (GAM) to evaluate the effects of weather factors on HFMD cases. Then, GAM, support vectors regression (SVR) and random forest regression (RFR) models are used to compare predictive results. The annual average incidence was 129.72/100 000 from 2010 to 2019. Its distribution showed a unimodal trend, with incidence increasing from March, peaking from May to September. Our study revealed the nonlinear relationship between temperature, rainfall and relative humidity and HFMD cases and based on the predictive result, the performances of three models constructed ranked in descending order are: SVR > GAM> RFR, and SVR has the smallest prediction errors. These findings provide quantitative evidence for the prediction of HFMD for special high-risk regions and can help public health agencies implement prevention and control measures in advance.
The cosmic evolution of the chemical elements from the Big Bang to the present time is driven by nuclear fusion reactions inside stars and stellar explosions. A cycle of matter recurrently re-processes metal-enriched stellar ejecta into the next generation of stars. The study of cosmic nucleosynthesis and this matter cycle requires the understanding of the physics of nuclear reactions, of the conditions at which the nuclear reactions are activated inside the stars and stellar explosions, of the stellar ejection mechanisms through winds and explosions, and of the transport of the ejecta towards the next cycle, from hot plasma to cold, star-forming gas. Due to the long timescales of stellar evolution, and because of the infrequent occurrence of stellar explosions, observational studies are challenging, as they have biases in time and space as well as different sensitivities related to the various astronomical methods. Here, we describe in detail the astrophysical and nuclear-physical processes involved in creating two radioactive isotopes useful in such studies, $^{26}\mathrm{Al}$ and $^{60}\mathrm{Fe}$. Due to their radioactive lifetime of the order of a million years, these isotopes are suitable to characterise simultaneously the processes of nuclear fusion reactions and of interstellar transport. We describe and discuss the nuclear reactions involved in the production and destruction of $^{26}\mathrm{Al}$ and $^{60}\mathrm{Fe}$, the key characteristics of the stellar sites of their nucleosynthesis and their interstellar journey after ejection from the nucleosynthesis sites. This allows us to connect the theoretical astrophysical aspects to the variety of astronomical messengers presented here, from stardust and cosmic-ray composition measurements, through observation of $\gamma$ rays produced by radioactivity, to material deposited in deep-sea ocean crusts and to the inferred composition of the first solids that have formed in the Solar System. We show that considering measurements of the isotopic ratio of $^{26}\mathrm{Al}$ to $^{60}\mathrm{Fe}$ eliminate some of the unknowns when interpreting astronomical results, and discuss the lessons learned from these two isotopes on cosmic chemical evolution. This review paper has emerged from an ISSI-BJ Team project in 2017–2019, bringing together nuclear physicists, astronomers, and astrophysicists in this inter-disciplinary discussion.