We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The prevalence of co-morbid anxiety and depression varies greatly between research studies, making it difficult to understand and estimate the magnitude of this problem. This systematic review and meta-analysis aim to provide up-to-date information on the global prevalence of co-morbid anxiety and depression in pregnant and postpartum women and to further investigate the sources of heterogeneity. Systematic searches of eight electronic databases were conducted for original studies published from inception to December 10, 2024. We selected studies that directly reported prevalence data on co-morbid anxiety and depression during the perinatal periods. We extracted data from published study reports and calculated the pooled prevalence of symptoms of co-morbid anxiety and depression. There are 122 articles involving 560,736 women from 43 different countries included in this review. The global prevalence of co-morbid anxiety and depression during the perinatal period was about 9% (95%CI 8%–10%), with approximately 9% (95%CI 8%–11%) in pregnant women and 8% (95%CI 7%–10%) in postpartum women. Prevalence varied significantly by the assessment time points, study country, study design, and the assessment tool used for anxiety and depression, while prevalence was not dependent on publication year, country income level, and COVID-19 context. No publication bias was observed for this prevalence rate. These findings suggest that approximately 1 in 10 women experience co-morbid anxiety and depression during pregnancy and postpartum. Targeted action is needed to reduce this burden.
This study investigates the spatial distribution of inertial particles in turbulent Taylor–Couette flow. Direct numerical simulations are performed using a one-way coupled Eulerian–Lagrangian approach, with a fixed inner-wall Reynolds number of 2500 for the carrier flow, while the particle Stokes number ($St$) varies from 0.034 to 1 for the dispersed phase. We first examine the issue of preferential concentration of particles near the outer-wall region. Employing two-dimensional Voronoï analysis, we observe a pronounced particle clustering with increasing $St$, particularly evident in regions of low fluid velocity. Additionally, we investigate the concentration balance equation, inspired by the work of Johnson et al. (J. Fluid Mech., vol. 883, 2020, A27), to examine the particle radial distribution. We discern the predominant sources of influence, namely biased sampling, turbophoresis and centrifugal effects. Across all cases, centrifugal force emerges as the primary driver, causing particle migration toward the outer wall. Biased sampling predominantly affects smaller inertial particles, driving them toward the inner wall due to sampling within Taylor rolls with inward radial velocity. Conversely, turbophoresis primarily impacts larger inertial particles, inducing migration towards both walls where turbulent intensity is weaker compared with the bulk. With the revealed physics, our work provides a basis for predicting and controlling particle movement and distribution in industrial applications.
The assessment of seed quality and physiological potential is essential in seed production and crop breeding. In the process of rapid detection of seed viability using tetrazolium (TZ) staining, it is necessary to spend a lot of labour and material resources to explore the pretreatment and staining methods of hard and solid seeds with physical barriers. This study explores the TZ staining methods of six hard seeds (Tilia miqueliana, Tilia henryana, Sassafras tzumu, Prunus subhirtella, Prunus sibirica, and Juglans mandshurica) and summarizes the TZ staining conditions required for hard seeds by combining the difference in fat content between seeds and the kinship between species, thus providing a rapid viability test method for the protection of germplasm resources of endangered plants and the optimization of seed bank construction. The TZ staining of six species of hard seeds requires a staining temperature above 35 °C and a TZ solution concentration higher than 1%. Endospermic seeds require shorter staining times than exalbuminous seeds. The higher the fat content of the seeds, the lower the required incubation temperature and TZ concentration for staining, and the longer the staining time. And the closer the relationship between the two species, the more similar their staining conditions become. The TZ staining method of similar species can be predicted according to the genetic distance between the phylogenetic trees, and the viability of new species can be detected quickly.
Data on epidemiology trends of paediatric tuberculosis (TB) are limited in China. So, we investigated the clinical and epidemiological profiles in diagnosed TB disease and TB infection patients at Beijing Children’s Hospital. Of 3 193 patients, 51.05% had pulmonary TB (PTB) and 15.16% had extrapulmonary TB (EPTB). The most frequent forms of EPTB were TB meningitis (39.05%), pleural TB (29.75%), and disseminated TB (10.33%). PTB patients were significantly younger and associated with higher hospitalization frequency. Children aged 1–4 years exhibited higher risk of PTB and TB meningitis, and children aged 5–12 years had higher risk of EPTB. The proportion of PTB patients increased slightly from 40.9% in 2012 to 65% in 2019, and then decreased to 17.8% in 2021. The percentage of EPTB cases decreased from 18.3% in 2012 to 15.2% in 2019, but increased to 16.4% in 2021. Among EPTB cases, the largest increase was seen in TB meningitis. In conclusion, female and young children had higher risk of PTB in children. TB meningitis was the most frequent forms of EPTB among children, and young children were at high risk of TB meningitis. The distribution of different types of EPTB differed by age.
A common complication of bicanalicular intubation is dislocation of the silicone tube.
Methods
Eleven patients with prolapsed silicone tubes who had undergone bicanalicular nasal intubation were injected with a 2 per cent lidocaine solution to infiltrate the lacrimal duct mucosa. A memory wire probe was used to pull a 4-0 suture through the lacrimal passage retrogradely, allowing the suture to grab the silicone tube. Paraffin oil was applied to the contact part of the rope and the silicone tube, then the distal end of the silk thread was removed from the nostril until the tube was pulled into place.
Results
The prolapsed silicone tubes were restored by surgery in nine patients, with the drainage tube in the correct position in the eye and the lacrimal duct irrigation unobstructed.
Conclusion
The optimisations made in this study are considered effective adjustments of reduction surgery for a prolapsed silicone tube.
Ventilated cavitating flows are investigated via direct numerical simulations, using a coupled level set and volume of fluid method to capture the interface between the air and water phases. A ventilated disk cavitator is used to create the cavity and is modelled by a sharp-interface immersed boundary method. The simulation data provide a comprehensive description of the two-phase flow and the air leakage and vortex shedding processes in the cavitating flow. The mean velocity of the air phase suggests the existence of three characteristic flow structures, namely the shear layer (SL), recirculating area (RA) and jet layer (JL). The turbulent kinetic energy (TKE) is concentrated in the JL in the closure region, and streamwise turbulent fluctuations dominate transverse fluctuations in both SL and JL. Budget analyses of the TKE show that the production term causes the TKE to increase in the SL due to the high velocity gradients, and decrease in the JL due to streamwise stretching effects. Air leakage and vortex shedding occur periodically in the closure region, and the one-to-one correspondence between these two processes is confirmed by the velocity and volume fluid spectra results, and the autocorrelation function of the air volume fraction. Moreover, the coherent flow structures are analysed using the spectral proper orthogonal decomposition method. We identify several fine coherent structures, including $SL_{KH}$ induced by the Kelvin–Helmholtz instability, $SL_{out}$ associated with large-scale vortex shedding, $SL_{in}$ associated with small-scale vortex shedding, and $SL_{r}$ associated with upstream turbulent convection. The present study complements previous research by providing detailed descriptions of the turbulent motions associated with the violent mixing of air and water, and the complex interactions between different characteristic structures in cavitating flows.
The incidence of adolescent depressive disorder is globally skyrocketing in recent decades, albeit the causes and the decision deficits depression incurs has yet to be well-examined. With an instrumental learning task, the aim of the current study is to investigate the extent to which learning behavior deviates from that observed in healthy adolescent controls and track the underlying mechanistic channel for such a deviation.
Methods
We recruited a group of adolescents with major depression and age-matched healthy control subjects to carry out the learning task with either gain or loss outcome and applied a reinforcement learning model that dissociates valence (positive v. negative) of reward prediction error and selection (chosen v. unchosen).
Results
The results demonstrated that adolescent depressive patients performed significantly less well than the control group. Learning rates suggested that the optimistic bias that overall characterizes healthy adolescent subjects was absent for the depressive adolescent patients. Moreover, depressed adolescents exhibited an increased pessimistic bias for the counterfactual outcome. Lastly, individual difference analysis suggested that these observed biases, which significantly deviated from that observed in normal controls, were linked with the severity of depressive symoptoms as measured by HAMD scores.
Conclusions
By leveraging an incentivized instrumental learning task with computational modeling within a reinforcement learning framework, the current study reveals a mechanistic decision-making deficit in adolescent depressive disorder. These findings, which have implications for the identification of behavioral markers in depression, could support the clinical evaluation, including both diagnosis and prognosis of this disorder.
Plasma vertical displacement control is essential for the stable operation of tokamak devices. The traditional plasma vertical displacement calculation method is not suitable for balancing speed and accuracy simultaneously, which is necessary for real-time feedback control. In this study, neural networks are used to rapidly detect vertical displacement recognition. Based on a fully connected neural network, the vertical displacement calculation model is trained and tested using magnetic data of approximately 2000 shots. To compare the effects of different inputs on vertical displacement calculation, different magnetic measurement diagnostic signals are used to train and test the model. Compared with a full magnetic measurement dataset, 39 magnetic measurement signals (38 magnetic probes and plasma current) show better accuracy with mean square error <0.0005. The model is tested using historical experimental data, and it demonstrates accurate vertical displacement calculation even in the case of a vertical displacement event. In general, neural network algorithm has great application potential in vertical displacement calculation.
This study compares the detection rates of haemoglobin absorption spectral imaging and white light imaging in laryngeal papilloma surgery.
Methods
Seventeen patients with laryngeal papilloma who underwent surgery in our department from September 2019 to September 2021 were selected. All patients underwent carbon dioxide laser surgery under a microscope. The lesion sites were explored in white light mode and haemoglobin absorption spectral imaging mode. The pharynx and larynx anatomical sites were evaluated using Derkay's all-position scoring system. The numbers and scores for lesions observed in the two modes were compared.
Results
In 17 cases, there were statistically significant differences in the numbers of laryngeal papillomas (Derkay score) detected by white light mode and haemoglobin absorption spectral imaging mode. In 9 of 17 patients (52.94 per cent), the haemoglobin absorption spectral imaging mode showed additional diseased tissues.
Conclusion
The haemoglobin absorption spectral imaging mode can dynamically identify diseased tissues in carbon dioxide laser surgery under a microscope and improve the laryngeal papilloma detection rate.
Chronic inflammation exerts pleiotropic effects in the aetiology and progression of chronic obstructive pulmonary disease (COPD). Glucosamine is widely used in many countries and may have anti-inflammatory properties. We aimed to prospectively evaluate the association of regular glucosamine use with incident COPD risk and explore whether such association could be modified by smoking in the UK Biobank cohort, which recruited more than half a million participants aged 40–69 years from across the UK between 2006 and 2010. Cox proportional hazards models with adjustment for potential confounding factors were used to calculate hazard ratios (HR) as well as 95 % CI for the risk of incident COPD. During a median follow-up of 8·96 years (interquartile range 8·29–9·53 years), 9016 new-onset events of COPD were documented. We found that the regular use of glucosamine was associated with a significantly lower risk of incident COPD with multivariable adjusted HR of 0·80 (95 % CI, 0·75, 0·85; P < 0·001). When subgroup analyses were performed by smoking status, the adjusted HR for the association of regular glucosamine use with incident COPD were 0·84 (0·73, 0·96), 0·84 (0·77, 0·92) and 0·71 (0·62, 0·80) among never smokers, former smokers and current smokers, respectively. No significant interaction was observed between glucosamine use and smoking status (Pfor interaction = 0·078). Incident COPD could be reduced by 14 % to 84 % through a combination of regular glucosamine use and smoking cessation.
The present work was performed to analyse the association of dietary patterns with glycaemic control (Hb A1c < 7 %) in a large group of Chinese adults aged between 45 and 59 years.
Design:
Habitual dietary intakes in the preceding 12 months were assessed by well-trained interviewers using a validated semi-quantitative FFQ. Factor analysis with principal component method was used to obtain the dietary patterns, and the associations between dietary patterns and glycaemic control were determined using multivariable logistic regression models. Poor glycaemic control was defined as HbA1c ≥ 7·0.
Setting:
Despite decades of research, data on the relationship between dietary patterns and glycaemic control (HbA1c < 7 %) in China are sparse.
Participants:
A total of 1739 participants aged 45–59 years from Hangzhou were included in the final analysis.
Results:
Three dietary patterns were ascertained and labelled as traditional southern Chinese, Western and grains-vegetables patterns. After controlling of the possible confounders, participants in the highest quartile of Western pattern scores had greater OR for HbA1c ≥ 7·0 (OR = 1·05; (95 % CI 1·000, 1·095); P = 0·048) than did those in the lowest quartile. Compared with those in the lowest quartile of grains-vegetables pattern, participants in the highest quartile had lower OR for HbA1c ≥ 7·0 (OR = 0·82; (95 % CI 0·720, 0·949); P = 0·038). Besides, no significant relationship between the traditional southern Chinese pattern and HbA1c ≥ 7·0 was observed (P > 0·05).
Conclusions:
This study indicated that the Western pattern was associated with a higher risk, and the grains-vegetables pattern was associated with a lower risk for HbA1c ≥ 7·0. Future prospective studies are needed to confirm our findings.
No relevant studies have yet been conducted to explore which measurement can best predict the survival time of patients with cancer cachexia. This study aimed to identify an anthropometric measurement that could predict the 1-year survival of patients with cancer cachexia. We conducted a nested case–control study using data from a multicentre clinical investigation of cancer from 2013 to 2020. Cachexia was defined using the Fearon criteria. A total of 262 patients who survived less than 1 year and 262 patients who survived more than 1 year were included in this study. Six candidate variables were selected based on clinical experience and previous studies. Five variables, BMI, mid-arm circumference, mid-arm muscle circumference, calf circumference and triceps skin fold (TSF), were selected for inclusion in the multivariable model. In the conditional logistic regression analysis, TSF (P = 0·014) was identified as a significant independent protective factor. A similar result was observed in all patients with cancer cachexia (n 3084). In addition, a significantly stronger positive association between TSF and the 1-year survival of patients with cancer cachexia was observed in participants aged > 65 years (OR: 0·94; 95 % CI 0·89, 0·99) than in those aged ≤ 65 years (OR: 0·96; 95 % CI 0·93, 0·99; Pinteraction = 0·013) and in participants with no chronic disease (OR: 0·92; 95 % CI 0·87, 0·97) than in those with chronic disease (OR: 0·97; 95 % CI 0·94, 1·00; Pinteraction = 0·049). According to this study, TSF might be a good anthropometric measurement for predicting 1-year survival in patients with cancer cachexia.
This study aimed to explore the impacts of COVID-19 outbreak on mental health status in general population in different affected areas in China.
Methods
This was a comparative study including two groups of participants: (1) general population in an online survey in Ya'an and Jingzhou cities during the COVID-19 outbreak from 10–20 February 2020; and (2) matching general population selected from the mental health survey in Ya'an in 2019 (from January to May 2019). General Health Questionnaire (GHQ-12), Self-rating Anxiety Scale (SAS), and Self-rating Depression Scale (SDS) were used.
Results
There were 1775 participants (Ya'an in 2019 and 2020: 537 respectively; Jingzhou in 2020: 701). Participants in Ya'an had a significantly higher rate of general health problems (GHQ scores ⩾3) in 2020 (14.7%) than in 2019 (5.2%) (p < 0.001). Compared with Ya'an (8.0%), participants in Jingzhou in 2020 had a significantly higher rate of anxiety (SAS scores ⩾50, 24.1%) (p < 0.001). Participants in Ya'an in 2020 had a significantly higher rate of depression (SDS scores ⩾53, 55.3%) than in Jingzhou (16.3%) (p < 0.001). The risk factors of anxiety symptoms included female, number of family members (⩾6 persons), and frequent outdoor activities. The risk factors of depression symptoms included participants in Ya'an and uptake self-protective measures.
Conclusions
The prevalence of psychological symptoms has increased sharply in general population during the COVID-19 outbreak. People in COVID-19 severely affected areas may have higher scores of GHQ and anxiety symptoms. Culture-specific and individual-based psychosocial interventions should be developed for those in need during the COVID-19 outbreak.
The disease burden of infectious diarrhea cannot be underestimated. Its seasonal patterns indicate that weather patterns may play an important role and have an important effect on it. The objective of this study was to clarify the relationship between temperature and infectious diarrhea, and diarrhea-like illness.
Methods:
Distributed lag non-linear model, which was based on the definition of a cross-basis, was used to examine the effect.
Results:
Viral diarrhea usually had high incidence in autumn-winter and spring with a peak at -6°C; Norovirus circulated throughout the year with an insignificant peak at 8°C, while related bacteria usually tested positive in summer and peaked at 22°C. The lag-response curve of the proportion of diarrhea-like cases in outpatient and emergency cases revealed that at -6°C, with the lag days increasing, the proportion increased. Similar phenomena were observed at the beginning of the curves of virus and bacterial positive rate, showing that the risk increased as the lag days increased, peaking on days 16 and 9, respectively. The shape of lag-response curve of norovirus positive rate was different from others, presenting m-type, with 2 peaks on day 3 and day 18.
Conclusion:
Weather patterns should be taken into account when developing surveillance programs and formulating relevant public health intervention strategies.
Continuous hBN films have been grown by means of a radio-frequency-sputtering technology, and their material properties have been investigated. The prepared hBN films can achieve good smoothness in a large area. The surface morphologies and compositions of the hBN films on Si substrate and Al film have been characterized, indicating that there is no difference. The 101-phase peak of hBN film is the strongest, and the optical band gap of the fabricated film is 5.84 eV. An attempt on the fabrication of the hBN based resistive switching (RS) device has been made by using an Ag/hBN/Al structure, leading to the observation of a clear and stable RS behavior. The device exhibits a resistance window (high-resistivity state/low-resistivity state) of around 102, and the RS behaviors of hBN film prepared by sputtering were first observed. It has been found that the opening voltage for the device is changed when a different cycle voltage is applied because of the built-in electric field increasing with the increase of applied cycle voltage. The mechanism of the RS behavior has been analyzed, which lay a foundation for the application of hBN as RS material in resistive random access memory to improve the storage density.
Starch content is an important trait in barley. To evaluate the genetic diversity and identify molecular markers of starch content in barley, 40 cultivated barley genotypes collected from different regions, including genotypes whose starch content is at either the high or low end of the spectrum (15), were used in this study. All the genotypes were re-sequenced by the double-digest-restriction associated DNA sequencing method, and a total of 299,103 single-nucleotide polymorphism (SNP) markers were obtained. The genotypes were divided into four sub-populations based on FASTSTRUCTURE, principal component analysis and neighbour-joining tree analysis. All four sub-populations had a high linkage disequilibrium, especially group 3, whose members were recently bred for malting in the Jiangsu coastal area. The starch content of the barley lines was evaluated during three growing seasons (2014–2017), and the average values of starch content across the three growing seasons at the low and high ends were 51.5 and 55.0%, respectively. The starch content was affected by population structure, the barley in group 2 had a low starch content, while the barley in group 4 had a high starch content. Twenty-six SNP markers were identified as being significantly associated with starch content (P ⩽ 0.001) based on the average values across the three growing seasons using the mixed linear model method. These SNP markers were located on chromosomes 1H and 4H, and were considered loci of qSC1-1 and qSC4-1, respectively. The major identified QTLs for starch content are helpful for further research on carbohydrates and for barley breeding.
The COVID-19 outbreak required the significantly increased working time and intensity for health professionals in China, which may cause stress signs.
Methods.
From March 2–13 of 2020, 4,618 health professionals in China were included in an anonymous, self-rated online survey regarding their concerns on exposure to the COVID-19 outbreak. The questionnaires consisted of five parts: basic demographic information and epidemiological exposure; occupational and psychological impact; concerns during the episode; coping strategies; and the Huaxi Emotional-Distress Index (HEI).
Results.
About 24.2% of respondents experienced high levels of anxiety or/and depressive symptoms since the COVID-19 outbreak. Respondents who worried about their physical health and those who had COVID-19 infected friends or close relatives were more likely to have high HEI levels, than those without these characteristics. Further, family relationship was found to have an independent protective effect against high HEI levels. Their main concerns were that their families would not be cared for and that they would not be able to work properly. Compared to respondents with clear emotional problems, those with somewhat hidden emotional issues adopted more positive coping measures.
Conclusions.
About a quarter of medical staff experienced psychological problems during the pandemic of COVID-19. The psychological impact of stressful events was related to worrying about their physical health, having close COVID-19 infected acquaintances and family relationship issues. Therefore, the psychological supprot for medical staff fighting in the COVID-19 pandemic may be needed.
Phase-resolved wave simulation and direct numerical simulation of turbulence are performed to investigate the surface wave effects on the energy transfer in overlying turbulent flow. The JONSWAP spectrum is used to initialize a broadband wave field. The nonlinear wave field is simulated using a high-order spectral method, and the resultant wave surface provides the bottom boundary conditions for direct numerical simulation of the overlying turbulent flow. Two wave ages of $c_{p}/u_{\ast }=2$ and 25 are considered, corresponding to slow and fast wave fields, respectively, where $c_{p}$ denotes the celerity of the peak wave and $u_{\ast }$ denotes the friction velocity. The energy transfer of turbulent motions in the presence of surface waves is investigated through the spectral analysis of the two-point correlation transport equation. It is found that the production term has an extra peak at the dominant wavelength scale in the vicinity of the surface, and the energy transported to the surface via viscous and spatial turbulent transport is enhanced in the region of $y^{+}<10$. The presence of surface waves results in an inverse turbulent energy cascade in the near-surface region, where small-scale wave-related motions transfer energy back to the dominant wavelength scale. Pressure-related terms reflecting the spatial and inter-component energy transfer are strongly dependent on the wave age. Furthermore, triadic interaction analysis reveals that the energy influx at the dominant wavelength scale is due to the contribution of the neighbouring streamwise turbulent motions, and those at the harmonic wavelength scales contribute the most.
Silicon telluride (Si2Te3) is a silicon-based 2D chalcogenide with potential applications in optoelectronics. It has a unique crystal structure where Si atoms form Si-Si dimers to occupy the “metal” sites. In this paper, we report an ab initio computational study of its optical dielectric properties using the GW approximation and the Bethe-Salpeter equation (BSE). Strong in-plane optical anisotropy is discovered. The imaginary part of the dielectric constant in the direction parallel to the Si-Si dimers is found to be much lower than that perpendicular to the dimers. The optical measurement of the absorption spectra of 2D Si2Te3 nanoplates shows modulation of the absorption coefficient under 90-degree rotation, confirming the computational results. We show the optical anisotropy originates from the particular compositions of the wavefunctions in the valence and conduction bands. Because it is associated with the Si dimer orientation, the in-plane optical anisotropy can potentially be dynamically controlled by electrical field and strain, which may be useful for new device design. In addition, BSE calculations reduce GW quasiparticle band gap by 0.3 eV in bulk and 0.6 eV in monolayer, indicating a large excitonic effect in Si2Te3. Furthermore, including electron-hole interaction in bulk calculations significantly reduces the imaginary part of the dielectric constant in the out-of-plane direction, suggesting strong interlayer exciton effect in Si2Te3 multilayers.