We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present results of three-dimensional direct numerical simulations of turbulent Rayleigh–Bénard convection of dilute polymeric solutions for Rayleigh number ($Ra$) ranging from $10^6$ to $ 10^{10}$, and Prandtl number $Pr=4.3$. The viscoelastic flow is simulated by solving the incompressible Navier–Stokes equations under the Boussinesq approximation coupled with the finitely extensible nonlinear elastic Peterlin constitutive model. The Weissenberg number ($Wi$) is either $Wi=5$ or $Wi=10$, with the maximum chain extensibility parameter $L=50$, corresponding to moderate fluid elasticity. Our results demonstrate that both heat transport and momentum transport are reduced by the presence of polymer additives in the studied parameter range. Remarkably, the specific parameters used in the current numerical study give similar heat transfer reduction values as observed in experiments. We demonstrate that polymers have different effects in different regions of the flow. The presence of polymers stabilises the boundary layer, which is found to be the primary cause of the overall heat transfer reduction. In the bulk region, the presence of polymers slows down the flow by increasing the effective viscosity, enhances the coherency of thermal plumes, and suppresses the small-scale turbulent fluctuations. For small $Ra$, the heat transfer reduction in the bulk region is associated with plume velocity reduction, while for larger $Ra$, it is caused by the competing effects of suppressed turbulent fluctuations and enhanced plume coherency.
Hand, foot, and mouth disease (HFMD) shows spatiotemporal heterogeneity in China. A spatiotemporal filtering model was constructed and applied to HFMD data to explore the underlying spatiotemporal structure of the disease and determine the impact of different spatiotemporal weight matrices on the results. HFMD cases and covariate data in East China were collected between 2009 and 2015. The different spatiotemporal weight matrices formed by Rook, K-nearest neighbour (KNN; K = 1), distance, and second-order spatial weight matrices (SO-SWM) with first-order temporal weight matrices in contemporaneous and lagged forms were decomposed, and spatiotemporal filtering model was constructed by selecting eigenvectors according to MC and the AIC. We used MI, standard deviation of the regression coefficients, and five indices (AIC, BIC, DIC, R2, and MSE) to compare the spatiotemporal filtering model with a Bayesian spatiotemporal model. The eigenvectors effectively removed spatial correlation in the model residuals (Moran’s I < 0.2, p > 0.05). The Bayesian spatiotemporal model’s Rook weight matrix outperformed others. The spatiotemporal filtering model with SO-SWM was superior, as shown by lower AIC (92,029.60), BIC (92,681.20), and MSE (418,022.7) values, and higher R2 (0.56) value. All spatiotemporal contemporaneous structures outperformed the lagged structures. Additionally, eigenvector maps from the Rook and SO-SWM closely resembled incidence patterns of HFMD.
The study aimed to determine the patterns of the vestibular and ocular motor findings in cerebellar infarction (CI).
Methods:
We retrospectively analyzed vestibular and ocular motor test results in 23 CI patients and 32 acute unilateral vestibulopathy (AUVP) patients.
Results:
Among CI cases, the posterior inferior cerebellar artery (PICA) was the most commonly affected territory. Vertigo is predominantly observed in patients with infarctions affecting PICA or anterior inferior cerebellar artery (AICA). Lesions involving the superior cerebellar artery (SCA) mainly result in dizziness. Saccadic intrusion and oscillation, abnormal bilateral smooth pursuit (SP) and abnormal saccades were more prevalent in the CI group than in the AUVP group (all p < 0.05). Horizontal saccades were abnormal in 11 patients (47.8%) with CI. All AUVP patients had normal horizontal saccades. Horizontal SP was impaired in 13 patients (56.5%) with CI, with decreased gain toward both sides in 10 and toward 1 side in 3. Impaired horizontal SP was noted in nine patients (28.1%) with AUVP, with decreased gain toward the contralesional side in all cases. A total of 26.3% (5/19) of patients with CI exhibited subjective visual vertical (SVV) deviation toward the affected side and 31.6% (6/19) toward the unaffected side. In patients with AUVP, 70.0% (21/30) showed SVV deviation toward the affected side.
Conclusions:
Vertigo is mainly seen in PICA or AICA infarctions. SCA lesions mostly cause dizziness. Saccadic intrusion and oscillation, abnormal bilateral SP and abnormal saccades contribute to the diagnosis of CI. Moreover, SVV deviation varies depending on the cerebellar structures involved.
In this paper, on–off switching digitization of a W-band variable gain power amplifier (VGPA) with above 60 dB dynamic range is introduced for large-scale phased array. Digitization techniques of on–off switching modified stacking transistors with partition are proposed to optimize configuration of control sub-cells. By the proposed techniques, gain control of a radio frequency variable gain amplifier (VGA) could be highly customized for both coarse and fine switching requirements instead of using additional digital-to-analog converters to tune the overall amplifier bias. The designed VGA in 130 nm SiGe has achieved switchable gain range from −46.4 to 20.6 dB and power range from −25.0 to 15.7 dBm at W band. The chip size of the fabricated VGPA is about 0.31 mm × 0.1 mm.
COVID-19 carriers experience psychological stresses and mental health issues such as varying degrees of stigma. The Social Impact Scale (SIS) can be used to measure the stigmatisation of COVID-19 carriers who experience such problems.
Aims
To evaluate the reliability and validity of the Chinese version of the SIS, and the association between stigma and depression among asymptomatic COVID-19 carriers in Shanghai, China.
Method
A total of 1283 asymptomatic COVID-19 carriers from Shanghai Ruijin Jiahe Fangcang Shelter Hospital were recruited, with a mean age of 39.64 ± 11.14 years (59.6% male). Participants completed questionnaires, including baseline information and psychological measurements, the SIS and Self-Rating Depression Scale. The psychometrics of the SIS and its association with depression were examined through exploratory factor analysis, confirmatory factor analysis and receiver operating characteristic analysis.
Results
The average participant SIS score was 42.66 ± 14.61 (range: 24–96) years. Analyses suggested the model had four factors: social rejection, financial insecurity, internalised shame and social isolation. The model fit statistics of the four-factor SIS were 0.913 for the comparative fit index, 0.902 for the Tucker–Lewis index and 0.088 for root-mean-square error of approximation. Standard estimated factor loadings ranged from 0.509 to 0.836. After controlling for demographic characteristics, the total score of the 23-item SIS predicted depression (odds ratio: 1.087, 95% CI 1.061–1.115; area under the curve: 0.84, 95% CI 0.788–0.892).
Conclusions
The Chinese version of the SIS showed good psychometric properties and can be used to assess the level of perceived stigma experienced by asymptomatic COVID-19 carriers.
This experiment was conducted to investigate whether dietary chenodeoxycholic acid (CDCA) could attenuate high-fat (HF) diet-induced growth retardation, lipid accumulation and bile acid (BA) metabolism disorder in the liver of yellow catfish Pelteobagrus fulvidraco. Yellow catfish (initial weight: 4·40 (sem 0·08) g) were fed four diets: the control (105·8 g/kg lipid), HF diet (HF group, 159·6 g/kg lipid), the control supplemented with 0·9 g/kg CDCA (CDCA group) and HF diet supplemented with 0·9 g/kg CDCA (HF + CDCA group). CDCA supplemented in the HF diet significantly improved growth performance and feed utilisation of yellow catfish (P < 0·05). CDCA alleviated HF-induced increment of hepatic lipid and cholesterol contents by down-regulating the expressions of lipogenesis-related genes and proteins and up-regulating the expressions of lipololysis-related genes and proteins. Compared with the control group, CDCA group significantly reduced cholesterol level (P < 0·05). CDCA significantly inhibited BA biosynthesis and changed BA profile by activating farnesoid X receptor (P < 0·05). The contents of CDCA, taurochenodeoxycholic acid and glycochenodeoxycholic acid were significantly increased with the supplementation of CDCA (P < 0·05). HF-induced elevation of cholic acid content was significantly attenuated by the supplementation of CDCA (P < 0·05). Supplementation of CDCA in the control and HF groups could improve the liver antioxidant capacity. This study proved that CDCA could improve growth retardation, lipid accumulation and BA metabolism disorder induced by HF diet, which provided new insight into understanding the physiological functions of BA in fish.
The genus Oxalis contains important species worldwide with great economic and edible values. However, the testing guidelines have not been furbished, especially in China. Oxalis germplasm, including 60 species and 125 varieties, was collected from home and abroad and extensive field trials and phenotypic observations were conducted along with quantitative taxonomy, observations, correlation analysis and cluster analysis. Under the test guidelines of the International Union for the Protection of New Plant Varieties (UPOV), general guidelines for testing for distinctness, uniformity, stability (DUS) of new plant varieties, and Japanese test guidelines for DUS of Oxalis, 96 test characteristics (38 qualitative characteristics, 28 quantitative characteristics and 30 pseudo-qualitative characteristics) were determined as DUS test characteristics of Oxalis. Each test characteristic was scientifically graded and accurately described, and standard varieties and characteristic diagrams were provided for some characteristics. The guidelines for testing DUS of new plant varieties of Oxalis provide a standard for examining and testing new varieties of plants.
Light has a substantial effect on the behaviour and physiology of nocturnal moths. Ectropis grisescens is a major nocturnal tea pest in China, and light traps are commonly used to control geometrid moths because of their positive phototaxis. However, some moths gather around light traps and enter the light adaptation state, which decreases the efficacy of light traps in controlling this pest. We identified opsin genes and the spectral sensitivities of the photoreceptors of E. grisescens moths. We also determined the effects of several monochromatic lights on opsin gene expression and light adaptation. We detected three types of opsin genes and six spectral sensitive peaks (at 370, 390, 480, 530, 550, and 580 nm). We also observed significant changes in the diurnal rhythm of opsin gene expression under different light conditions. When active males were suddenly exposed to different monochromatic lights, they quickly entered the light adaptation state, and the adaptation time was negatively correlated with the light intensity. Males were most sensitive to 390 nm wavelengths, followed by 544 nm, 457 nm, and 593 nm. Red light (627 nm) did not affect the activity of E. grisescens males but had detectable physiological effects.
The relationship between magmatism and gold mineralization has been a topic of interest in understanding the formation of ore deposits. The Baizhangzi gold deposit, located in the northern margin of the North China Craton, is hosted by the Baizhangzi granite (BZG) and provides a case to evaluate the relation between granite and gold mineralization in Late Triassic. In this study, we present petrography, bulk geochemistry, zircon U-Pb isotope and trace elements data, as well as major elements of biotite and plagioclase for the BZG to evaluate the petrogenesis and link with gold mineralization. The BZG comprises biotite monzogranite, biotite-bearing monzogranite and monzogranite (BZGs). Zircon U-Pb geochronology shows that all the granitoids of BZGs were coeval with a formation age of 232 Ma. The granitoids, with high SiO2, Al2O3 and Sr, while low Y and Yb, show adakitic affinity. They are enriched in LILFs (e.g., Rb, Ba, Th, U and Sr) and LREEs, while depletion in HFSEs (e.g., Nb, Ta, P and Ti). The geochemical and mineral chemical data suggest that the granitoids have experienced the fractional crystallization of biotite + plagioclase + K- feldspar + apatite. Crystallization temperature is estimated as ca. 700°C, and pressure is between 0.71 kbar and 1.60 kbar. The monzogranite shows higher values of logfO2, △FMQ and △NNO than the biotite-bearing monzogranite, ranging from −19.76 to −11.71, −4.93 to +3.67 and −5.48 to +3.11, respectively. The fractional crystallization, together with high fO2, K-metasomatism and low evolution degree, provided favourable conditions for gold mineralization.
Gravity–capillary waves are waves influenced by both the effects of surface tension and gravity; these waves are at small scales with wavelength range from approximately 10 cm to less than 1 cm. Gravity–capillary waves play a significant role in air–sea interactions, and they exhibit much different features compared with gravity waves. They can be observed widely on the sea surface. Parasitic waves (capillary waves generated by and that ride on gravity and/or gravity–capillary waves) and micro-breaking can be observed on the water surface with winds; however, the presence of wind makes it difficult to analyse the mechanisms of the wave itself. In this paper, parasitic waves and micro-breaking on gravity–capillary waves are examined experimentally, both in the absence of wind. Parasitic waves and axisymmetric micro-breaking waves are generated mechanically in a convergent channel, where energy density increases due to spatial convergence. Three experimental techniques are used to measure wave properties: planar laser-induced fluorescence, particle image velocimetry and shadowgraphs. The wave profile evolution and vortices beneath the parasitic waves are studied. The micro-breaking of gravity–capillary waves is observed on a surface with added surfactant. The surfactant increases the Bond number, and makes breaking possible in these small-scale waves. Energy dissipation of parasitic waves and micro-breaking is quantified, and the enhanced dissipation caused by parasitic waves is identified through the experiments. In this study, mechanically generated breaking waves with wavelengths less than 10 cm are studied for the first time, without the effect of wind. The results yield insight into wave characteristics and energy dissipation on the air–sea interface at small scales.
This study aims to understand the epidemiological characteristics of SARS-CoV-2 infection in the paediatric population during the outbreak of the Omicron variant in Shanghai. We retrospectively analysed the population-based epidemiological characteristics and clinical outcome of SARS-CoV-2 Omicron variant infection in children in Minhang District, Shanghai, based on the citywide surveillance system during the outbreak period in 2022 (March to May). During this time, a total of 63,969 cases of SARS-CoV-2 infection were notified in Minhang District, out of which 4,652 (7.3%) were children and adolescents <18 years. The incidence rate of SARS-CoV-2 infections in children was 153 per 10,000. Of all paediatric cases, 50% reported to be clinically symptomatic within 1–3 days after PCR confirmation by parents or themselves, with 36.3% and 18.9% of paediatric cases reporting fever and cough. Also, 58.4% of paediatric cases had received at least one dose of the COVID-19 vaccine and 52.1% had received two doses of the COVID-19 vaccination. Our findings are informative for the implementation of appropriate measures to protect children from the threat of SARS-CoV-2 infection.
According to the public data collected from the Health Commission of Gansu Province, China, regarding the COVID-19 pandemic during the summer epidemic cycle in 2022, the epidemiological analysis showed that the pandemic spread stability and the symptom rate (the number of confirmed cases divided by the sum of the number of asymptomatic cases and the number of confirmed cases) of COVID-19 were different among 3 main epidemic regions, Lanzhou, Linxia, and Gannan; both the symptom rate and the daily instantaneous symptom rate (daily number of confirmed cases divided by the sum of daily number of asymptomatic cases and daily number of confirmed cases) in Lanzhou were substantially higher than those in Linxia and Gannan. The difference in the food sources due to the high difference of the population ethnic composition in the 3 regions was probably the main driver for the difference of the symptom rates among the 3 regions. This work provides potential values for prevention and control of COVID-19 in different regions.
For the omnivorous Cherax quadricarinatus crayfish, plant raw materials can be good alternatives to dietary fish meal (FM). A 56-d feeding trial was conducted in C. quadricarinatus (11·70 (se 0·13) g). Diet with 100 % FM as the protein source was the control. Seven experimental diets were formulated by replacing 75 or 100 % of FM with soyabean meal (SM75, SM100) or cottonseed meal (CM75 and CM100), and a mixture of SM and CM (protein content is 1:1) replacing 50, 75 or 100 % of FM (SC50, SC75 and SC100). Crayfish fed the CM100 and SC100 showed significantly lower weight gain (WG), specific growth rate, trypsin and pepsin activities compared with the control diet. Crayfish in CM100 group showed significantly higher GPx, alanine aminotransferase, aspartate aminotransferase activities and malondialdehyde content than the control. SM100 and CM100 diets can cause slight separation of the peritrophic membrane from the intestinal folds. The pepsin activity of crayfish in SC50 was significantly higher than those in other experimental diets. The highest WG and muscle arginine content were also found in crayfish fed SC50. The relative abundance of Proteobacteria, Unclassified Enterobacteriaceae and Candidatus Bacilloplasma was significantly higher, but Actinobacteriota was significantly lower in SM100, CM100 and SC100 than in control. Microbiota functional prediction indicated that the relative abundance of ‘cell motility’ pathway in crayfish fed CM100 was significantly decreased compared with the control. In conclusion, only half of the FM can be effectively substituted with a mixture of SM and CM (protein content is 1:1) for C. quadricarinatus.
Lower-crust-derived adakitic rocks in the Gangdese belt provide important constraints on the timing of Tibetan crustal thickening and on the relative contributions of magmatic and tectonic processes. Here we present geochronological and geochemical data for the Wangdui porphyritic monzogranites in the western Gangdese belt. Zircon U–Pb dating yields emplacement ages of 46–44 Ma. All samples have high Sr (321–599 ppm), low Yb (0.76–1.33 ppm) and Y (10.6–18.3 ppm) contents, with high La/Yb (51.1–72.3) and Sr/Y (21.0–51.4) ratios, indicating adakitic affinities. The low MgO (0.97–1.76 wt %), Cr (7.49–53.6 ppm) and Ni (4.75–29.1 ppm) contents, as well as high 87Sr/86Sr(i) (0.7143–0.7145), low ϵNd(t) (−10.4 to −9.8) and zircon ϵHf(t) (−17.7 to 0.4) values, suggest that the Wangdui pluton most likely originated from partial melting of the thickened ancient lower crust. In combination with previously published data, despite the east–west-trending heterogeneity of crustal composition in the Gangdese belt, the La/Yb ratios of magmatic rocks reveal that both western and eastern segments experienced remarkable crustal thickening in the Eocene. However, in contrast to the thickened juvenile lower crust in the eastern segment formed by the underplating of mantle-derived magmas, tectonic shortening plays a more crucial role in thickening of the ancient basement in western Gangdese. In fact, such Eocene-thickened ancient lower-crust-derived adakitic rocks are widely distributed in the central Himalayan–Tibetan orogen. This, together with the extensive development of fold–thrust belts, suggests that tectonic shortening might be the main mechanism accounting for the crustal thickening associated with the India–Asia collision.
Fine fibre immersed in different flows is ubiquitous. For a fibre in shear flows, most motion modes appear in the flow-gradient plane. Here the two-dimensional behaviours of an individual flexible flap in channel flows are studied. The nonlinear coupling of the fluid inertia ($\textit {Re}$), flexibility of the flap ($K$) and channel width ($W$) is discovered. Inside a wide channel (e.g. $W=4$), as $K$ decreases, the flap adopts rigid motion, springy motion, snake turn and complex mode in sequence. It is found that the fluid inertia tends to straighten the flap. Moreover, $\textit {Re}$ significantly affects the lateral equilibrium location $y_{eq}$, therefore affecting the local shear rate and the tumbling period $T$. For a rigid flap in a wide channel, when $\textit {Re}$ exceeds a threshold, the flap stays inclined instead of tumbling. As $\textit {Re}$ further increases, the flap adopts swinging mode. In addition, there is a scaling law between $T$ and $\textit {Re}$. For the effect of $K$, through the analysis of the torque generated by surrounding fluid, we found that a smaller $K$ slows down the tumbling of the flap even if $y_{eq}$ is comparable. As $W$ decreases, the wall confinement effect makes the flap easier to deform and closer to the centreline. The tumbling period would increase and the swinging mode would be more common. When $W$ further decreases, the flaps are constrained to stay inclined, parabolic-like or one-end bending configurations moving along with the flow. Our study may shed some light on the behaviours of a free fibre in flows.
Reconstructing the history of elite communication in ancient China benefits from additional archaeological evidence. We combine textual analysis with new human stable carbon and nitrogen isotope data from two Chu burials in the Jingzhou area to reveal significant dietary differences among Chu nobles of the middle Warring States period (c. 350 BC). This research provides important new information on the close interaction between the aristocratic families of the Qin and Chu.
We aimed to investigate the associations between dietary branched-chain amino acids (BCAA) intake and long-term risks of CVD, cancer and all-cause mortality in nationwide survey participants aged ≥ 18.
Design:
This was a prospective cohort study. Dietary intakes of BCAA (leucine, isoleucine and valine) were determined from the total nutrient intake document. The main outcomes were CVD, cancer and all-cause mortality.
Setting:
A nationally representative sample of US adults were recruited by the National Center for Health Statistics (NCHS) from 1988 to 1994.
Participants:
A total of 14 397 adults aged ≥ 18 who participated in the United States National Health and Nutrition Examination Survey III (NHANES III) were included.
Results:
During 289 406 person-years of follow-up, we identified 4219 deaths, including 1133 from CVD and 926 from cancer. After multivariate adjustment, the hazard ratios (95 % confidence intervals) of all-cause mortality in the highest dietary BCAA and isoleucine intake quintile (reference: lowest quintiles) were 0·68 (0·48, 0·97) and 0·68 (0·48, 0·97), respectively. Each one-standard-deviation increase in total dietary BCAA or isoleucine intake was associated with an 18 % or 21 % decrease in the risk of all-cause mortality, respectively. The serum triglyceride (TAG) concentration was found to modify the association between the dietary BCAA intake and all-cause mortality (Pfor interaction = 0·008).
Conclusions:
In a nationally representative cohort, higher dietary intakes of BCAA and isoleucine were independently associated with a lower risk of all-cause mortality, and these associations were stronger in participants with higher serum TAG concentrations.
This paper first uses a decoupling modeling method to model legged robots. The method groups all the degrees of freedom according to the number of limbs, regarding each limb as a manipulator with serial structure, which greatly reduces the number of dynamic parameters that need to be identified simultaneously. On this basis, a step-by-step identification method from the end-effector link to the base link, referred to as “E-B” identification method, is proposed. Simulation verification is carried out on a quadruped robot with 16 degrees of freedom in Gazebo, and the validity of the method proposed is discussed.
Cross-waves are standing waves with crests perpendicular to a wave-maker; they are subharmonic waves excited by parametric instability. The modulational and chaotic behaviours of nonlinear cross-waves have been studied widely since the 1970s. Most of the previous work has focused on gravity waves where surface tension can be neglected. In this work we study cross-waves that are highly dependent on surface tension as well as gravity. By oscillating a planar wave-maker either vertically or horizontally with frequencies of 25 Hz through 40 Hz at one end of a rectangular basin, two-dimensional multi-component surface patterns are realized. Using the free-surface synthetic Schlieren technique to measure the surface elevations, multi-dimensional Fourier transforms are utilized to track the evolutionary spectrum of the water surface in both the temporal and spatial domains. Wavelet transforms are implemented to show the development of the various frequency components. Three-wave resonances with and without first subharmonics are observed for small nonlinearity. Three-dimensional oblique propagating cross-waves are generated at higher nonlinearity; unlike most previous cross-wave experiments, this staggered pattern propagates far downstream. Experimental evidence shows that two oblique propagating waves form a two-dimensional short-crested pattern, and that the lateral component of the waves develops into parametric sloshing modes corresponding to the width of the tank. Two regimes of nonlinear wave patterns, resonant triads and oblique propagating cross-waves, are delineated.