We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
American silk moth, Antheraea polyphemus Cramer 1775 (Lepidoptera: Saturniidae), native to North America, has potential significance in sericulture for food consumption and silk production. To date, the phylogenetic relationship and divergence time of A. polyphemus with its Asian relatives remain unknown. To end these issues, two mitochondrial genomes (mitogenomes) of A. polyphemus from the USA and Canada respectively were determined. The mitogenomes of A. polyphemus from the USA and Canada were 15,346 and 15,345 bp in size, respectively, with only two transitions and five indels. The two mitogenomes both encoded typical mitochondrial 37 genes. No tandem repeat elements were identified in the A+T-rich region of A. polyphemus. The mitogenome-based phylogenetic analyses supported the placement of A. polyphemus within the genus Antheraea, and revealed the presence of two clades for eight Antheraea species used: one included A. polyphemus, A. assamensis Helfer, A. formosana Sonan and the other contained A. mylitta Drury, A. frithi Bouvier, A. yamamai Guérin-Méneville, A. proylei Jolly, and A. pernyi Guérin-Méneville. Mitogenome-based divergence time estimation further suggested that the dispersal of A. polyphemus from Asia into North America might have occurred during the Miocene Epoch (18.18 million years ago) across the Berling land bridge. This study reports the mitogenome of A. polyphemus that provides new insights into the phylogenetic relationship among Antheraea species and the origin of A. polyphemus.
Let $\mu _{M,D}$ be the self-similar measure generated by $M=RN^q$ and the product-form digit set $D=\{0,1,\ldots ,N-1\}\oplus N^{p_1}\{0,1,\ldots ,N-1\}\oplus \cdots \oplus N^{p_s}\{0,1,\ldots ,N-1\}$, where $R\geq 2$, $N\geq 2$, q, $p_i(1\leq i\leq s)$ are integers with $\gcd (R,N)=1$ and $1\leq p_1<p_2<\cdots <p_s<q$. In this paper, we first show that $\mu _{M,D}$ is a spectral measure with a model spectrum $\Lambda $. Then, we completely settle two types of spectral eigenvalue problems for $\mu _{M,D}$. In the first case, for a real t, we give a necessary and sufficient condition under which $t\Lambda $ is also a spectrum of $\mu _{M,D}$. In the second case, we characterize all possible real numbers t such that $\Lambda '\subset \mathbb {R}$ and $t\Lambda '$ are both spectra of $\mu _{M,D}$.
Yiyang Dahegu rice (YyDHG) is an important agricultural specialty of Yiyang County, Jiangxi Province, and it is also a significant component of the local cultural and economic development. In this experiment, 89 samples of Dahegu rice (DHG) were collected from Jiangxi Province, including 52 samples of YyDHG and 37 samples of DHG from other regions within Jiangxi Province (oDHG). Comprehensive analysis was conducted using polyacrylamide gel electrophoresis, field phenotypic observation, population structure analysis and quality analysis. The results of variety identification indicated that the 89 samples actually comprised 52 distinct varieties, including 19 varieties of YyDHG. Population analysis has revealed rich genetic diversity among DHG varieties within Jiangxi Province, yet no significant subpopulation differentiation was observed between YyDHG and oDHG. Quality experiments demonstrated that YyDHG exhibits significant differences in appearance quality from oDHG, but no notable differences in milling quality or cooked taste and flavour. This suggests that the competitiveness of YyDHG in the market may not entirely depend on its unique quality characteristics, but rather more on its cultural value and brand effect. This experiment conducted a comprehensive analysis of the variety characteristics, genetic diversity and quality traits of YyDHG. Not only does it provide a scientific basis for the breeding and germplasm resource conservation of YyDHG, but it also holds positive implications for promoting the development of its industry.
Viscoplastic fluids exhibit yield stress, beyond which they flow viscously, while at lower stress levels they behave as solids. Despite their fundamental biological and medical importance, the hydrodynamics of swimming in viscoplastic environments is still evolving. In this study, we investigate the swimming of an ellipsoidal squirmer and the associated tracer diffusion in a Bingham viscoplastic fluid. The results illustrate that neutral squirmers in viscoplastic fluids experience a reduction in swimming speed and an increase in power dissipation as the Bingham number increases, with swimming efficiency peaking at moderate Bingham numbers. As the aspect ratio of a squirmer increases, ellipsoidal squirmers exhibit significantly higher swimming speeds in viscoplastic fluids. The polar and swirling modes can either enhance or reduce swimming speed, depending on the specific scenarios. These outcomes are closely related to the confinement effects induced by the yield surface surrounding the swimmer, highlighting how both swimmer shape and swimming mode can significantly alter the yield surface and, in turn, modify the swimming hydrodynamics. In addition, this study investigates the influence of viscoplasticity on swimmer-induced diffusion in a dilute suspension. The plasticity enforces the velocity far from the swimmer to be zero, thus breaking the assumptions used in Newtonian fluids. The diffusivity reaches its maximum at intermediate aspect ratios and Bingham numbers, and increases with the magnitude of the squirmer’s dipolarity. These findings are important to understand microscale swimming in viscoplastic environments and the suspension properties.
Language comprehension requires integration of multiple cues, but the underlying mechanisms of how accentuation, as a significant prosodic feature, influences the processing of words with different levels of cloze probability remains unclear. This study exploits event-related potentials (ERPs) to examine the processing of accented and unaccented words with high-, medium-, and low-cloze probabilities embedded in the final position of highly constrained contexts during spoken sentence comprehension. Our results indicate that accentuation and cloze probability interact across the N400 and post-N400 positivity (PNP) time windows. Under the accented condition, N400 amplitudes gradually increased as cloze probability decreased. Conversely, under the unaccented condition, PNP amplitudes gradually increased as cloze probability decreased with a frontal distribution. These results suggest that the effect of predictability is influenced by accentuation, which is likely due to the processing speed and depth of the critical words, modulated by the amount of attentional resources allocated to them.
Based on a 4f system, a 0° reflector and a single laser diode side-pump amplifier, a new amplifier is designed to compensate the spherical aberration of the amplified laser generated by a single laser diode side-pump amplifier and enhance the power of the amplified laser. Furthermore, the role of the 4f system in the passive spherical aberration compensation and its effect on the amplified laser are discussed in detail. The results indicate that the amplification efficiency is enhanced by incorporating a 4f system in a double-pass amplifier and placing a 0° reflector only at the focal point of the single-pass amplified laser. This method also effectively uses the heat from the gain medium (neodymium-doped yttrium aluminium garnet) of the amplifier to compensate the spherical aberration of the amplified laser.
The propagation of multiple ultraintense femtosecond lasers in underdense plasmas is investigated theoretically and numerically. We find that the energy merging effect between two in-phase seed lasers can be improved by using two obliquely incident guiding lasers whose initial phase is $\pi$ and $\pi /2$ ahead of the seed laser. Particle-in-cell simulations show that due to the repulsion and energy transfer of the guiding laser, the peak intensity of the merged light is amplified by more than five times compared to the seed laser. The energy conversion efficiency from all incident lasers to the merged light is up to approximately 60$\%$. The results are useful for many applications, including plasma-based optical amplification, charged particle acceleration and extremely intense magnetic field generation.
In this paper, we study the rapid transition in Richtmyer–Meshkov instability (RMI) with reshock through three-dimensional double-layer swirling vortex rings. The rapid transition in RMI with reshock has an essential influence on the evolution of supernovas and the ignition of inertial confinement fusion, which has been confirmed in numerical simulations and experiments in shock-tube and high-energy-density facilities over the past few years. Vortex evolution has been confirmed to dominate the late-time nonlinear development of the perturbed interface. However, few studies have investigated the three-dimensional characteristics and nonlinear interactions among vortex structures during the transition to turbulent flows. The coexistence of co-rotating and counter-rotating vortices is hypothesized to induce successive large-scale strain fields, which are the main driving sources for rapid development. The three-dimensional effect is reflected in the presence of local swirling motion in the azimuthal direction, and it decreases the translation velocity of a vortex ring. Large-, middle- and small-scale strain fields are employed to describe the development process of RMI with reshock, e.g. vorticity deposited by the reshock, formation of the coexistence of the co-rotating and counter-rotating vortices, iterative cascade under the amplification of the strain fields and viscous dissipation to internal energy. This provides theoretical suggestions for designing practical applications, such as the estimation of the hydrodynamic instability and mixing during the late-time acceleration phase of the inertial confinement fusion.
When a word is being translated, its immediately adjacent lexical items may impact the translation of the target word. However, the impact of adjacent lexical items on the oral translation of a target word situated in central vision remains unexplored. This behavioral study used a bilingual version of the flanker paradigm to examine the impact of within- and cross-language semantic effects on oral word translation. Unbalanced bilinguals were presented with a central target word that was flanked by two flanking words on either side. The target-flanker relations were manipulated as a function of semantic relatedness (identical, related and unrelated) and language congruency (congruent and incongruent). The task was to orally translate the target word from L1 to L2 (forward translation) in one session and from L2 to L1 (backward translation) in the other while ignoring the flanker words. Results showed faster responses for forward compared to backward translation. Moreover, in within-language (congruent) but not in cross-language (incongruent) contexts, semantic priming effects were observed in both directions of translation, with the effects being larger for backward than forward translation. Additionally, substantial cross-language semantic repetition priming effects were obtained. The findings are discussed within the framework of a two-process account for oral word translation.
There is a lack of longitudinal data on the relationship between upward social comparison on social network sites (SNSs) and depression and its underlying mechanisms. Therefore, this study aimed to examine the relationship between upward social comparison on social network sites and depression and analyze the mediating effects of self-concept clarity and self-esteem in this relationship. We employed a two-wave longitudinal design among 1179 Chinese middle school students. The results indicated that : upward social comparison on SNSs predicted middle school students’ depression; Self-concept clarity and self-esteem sequentially mediated the relationship between upward social comparison on SNSs and middle school students’ subsequent depression. These results suggested that three types of interventions could be effectively used to decrease the risk of depression among middle school students.
The emerging era of big data in radio astronomy demands more efficient and higher-quality processing of observational data. While deep learning methods have been applied to tasks such as automatic radio frequency interference (RFI) detection, these methods often face limitations, including dependence on training data and poor generalisation, which are also common issues in other deep learning applications within astronomy. In this study, we investigate the use of the open-source image recognition and segmentation model, Segment Anything Model (SAM), and its optimised version, HQ-SAM, due to their impressive generalisation capabilities. We evaluate these models across various tasks, including RFI detection and solar radio burst (SRB) identification. For RFI detection, HQ-SAM (SAM) shows performance that is comparable to or even superior to the SumThreshold method, especially with large-area broadband RFI data. In the search for SRBs, HQ-SAM demonstrates strong recognition abilities for Type II and Type III bursts. Overall, with its impressive generalisation capability, SAM (HQ-SAM) can be a promising candidate for further optimisation and application in RFI and event detection tasks in radio astronomy.
Measures of agreement are used in a wide range of behavioral, biomedical, psychosocial, and health-care related research to assess reliability of diagnostic test, psychometric properties of instrument, fidelity of psychosocial intervention, and accuracy of proxy outcome. The concordance correlation coefficient (CCC) is a popular measure of agreement for continuous outcomes. In modern-day applications, data are often clustered, making inference difficult to perform using existing methods. In addition, as longitudinal study designs become increasingly popular, missing data have become a serious issue, and the lack of methods to systematically address this problem has hampered the progress of research in the aforementioned fields. In this paper, we develop a novel approach to tackle the complexities involved in addressing missing data and other related issues for performing CCC analysis within a longitudinal data setting. The approach is illustrated with both real and simulated data.
This study investigates the flow structures and combustion regimes in an axisymmetric cavity-based scramjet combustor with a total temperature of 1800 K and a high Reynolds number of approximately 1 × 107. The hydroxyl planar laser-induced fluorescence technique, along with the broadband flame emission and CH* chemiluminescence, is employed to visualize the instantaneous flame structure in the optically accessible cavity. The jet-wake flame stabilization mode is observed, with intense heat release occurring in the jet wake upstream of the cavity. A hybrid Reynolds-averaged Navier–Stokes/large-eddy simulation approach is performed for the 0.18-equivalent-ratio case with a pressure-corrected flamelet/progress variable model. The combustion regime is identified mainly in the corrugated or wrinkled flamelet regime (approximately 102 < Da < 104, 103 < Ret < 105 where $Da$ is the Damköhler number and $Re_t$ is the turbulent Reynolds number). The combustion process is jointly dominated by supersonic combustion (which accounts for approximately 58 %) and subsonic combustion, although subsonic combustion has a higher heat release rate (peak value exceeding 1 × 109 J (m3s)−1). A partially premixed flame is observed, where the diffusion flame packages a considerable quantity of twisted premixed flame. The shockwave plays a critical role in generating vorticity by strengthening the volumetric expansion and baroclinic torque term, and it can facilitate the chemical reaction rates through the pressure and temperature surges, thereby enhancing the combustion. Combustion also shows a remarkable effect on the overall flow structures, and it drives alterations in the vorticity of the flow field. In turn, the turbulent flow facilitates the combustion and improves the flame stabilization by enhancing the reactant mixing and increasing the flame surface area.
Timing of food intake is an emerging aspect of nutrition; however, there is a lack of research accurately assessing food timing in the context of the circadian system. The study aimed to investigate the relation between food timing relative to clock time and endogenous circadian timing with adiposity and further explore sex differences in these associations among 151 young adults aged 18–25 years. Participants wore wrist actigraphy and documented sleep and food schedules in real time for 7 consecutive days. Circadian timing was determined by dim-light melatonin onset (DLMO). The duration between last eating occasion and DLMO (last EO-DLMO) was used to calculate the circadian timing of food intake. Adiposity was assessed using bioelectrical impedance analysis. Of the 151 participants, 133 were included in the statistical analysis finally. The results demonstrated that associations of adiposity with food timing relative to circadian timing rather than clock time among young adults living in real-world settings. Sex-stratified analyses revealed that associations between last EO-DLMO and adiposity were significant in females but not males. For females, each hour increase in last EO-DLMO was associated with higher BMI by 0·51 kg/m2 (P = 0·01), higher percent body fat by 1·05 % (P = 0·007), higher fat mass by 0·99 kg (P = 0·01) and higher visceral fat area by 4·75 cm2 (P = 0·02), whereas non-significant associations were present among males. The findings highlight the importance of considering the timing of food intake relative to endogenous circadian timing instead of only as clock time.
Isolated multi-MeV $\gamma$-rays with attosecond duration, high collimation and beam angular momentum (BAM) may find many interesting applications in nuclear physics, astrophysics, etc. Here, we propose a scheme to generate such $\gamma$-rays via nonlinear Thomson scattering of a rotating relativistic electron sheet driven by a few-cycle twisted laser pulse interacting with a micro-droplet target. Our model clarifies the laser intensity threshold and carrier-envelope phase effect on the generation of the isolated electron sheet. Three-dimensional numerical simulations demonstrate the $\gamma$-ray emission with 320 attoseconds duration and peak brilliance of $9.3\times 10^{24}$ photons s${}^{-1}$ mrad${}^{-2}$ mm${}^{-2}$ per 0.1$\%$ bandwidth at 4.3 MeV. The $\gamma$-ray beam carries a large BAM of $2.8 \times 10^{16}\mathrm{\hslash}$, which arises from the efficient BAM transfer from the rotating electron sheet, subsequently leading to a unique angular distribution. This work should promote the experimental investigation of nonlinear Thomson scattering of rotating electron sheets in large laser facilities.
EXOSC10 is an exosome-associated ribonuclease that degrades and processes a wide range of transcripts in the nucleus. The initial segment (IS) of the epididymis is crucial for sperm transport and maturation in mice by affecting the absorption and secretion that is required for male fertility. However, the role of EXOSC10 ribonuclease-mediated RNA metabolism within the IS in the regulation of gene expression and sperm maturation remains unknown. Herein, we established an Exosc10 conditional knockout (Exosc10 cKO) mouse model by crossing Exosc10F/F mice with Lcn9-Cre mice which expressed recombinase in the principal cells of IS as early as post-natal day 17. Morphological and histological analyses revealed that Exosc10 cKO males had normal spermatogenesis and development of IS. Moreover, the sperm concentration, morphology, motility, and frequency of acrosome reactions in the cauda epididymides of Exosc10 cKO mice were comparable with those of control mice. Thus, Exosc10 cKO males had normal fertility. Collectively, our genetic mouse model and findings demonstrate that loss of EXOSC10 in the IS of epididymis is dispensable for sperm maturation and male fertility.
Various studies have highlighted the increased incidence and symptoms of depression and anxiety in paediatric cancer survivors (PCS). Yet no meta-analysis has focused on post-traumatic stress disorder (PTSD) or post-traumatic stress symptoms (PTSS) in PCS and their family nucleus.
Aims
To evaluate the overall risk of PTSD and severity of PTSS in PCS and their family nucleus. Secondary objectives include identifying potential risk factors of PTSD and high PTSS.
Method
We systematically searched PubMed, Embase and PsycINFO for studies comparing the risk of PTSD and PTSS severity among PCS, their family nucleus and non-cancer controls. PRISMA reporting guidelines were followed. Random effects meta-analyses and meta-regressions were conducted.
Results
From 1089 records, we included 21 studies. PCS have an increased risk of PTSD (risk ratio 2.36, 95% CI 1.37–4.06) and decreased PTSS severity (standardised mean difference −0.29, 95% CI −0.50 to −0.08). Subgroup analyses of other categorical study-level characteristics revealed that female PCS who were older at diagnosis and data collection had a significantly higher risk of PTSD. Meta-regression were insignificant. Family nucleus did not show a significantly increased risk of PTSD (risk ratio 1.13, 95% CI 0.59–5.00) and PTSS severity (standardised mean difference 0.53, 95% CI −0.00 to 1.06). Systematically reviewing studies on the family nucleus found that the majority reported a significantly increased risk of psychological trauma compared with the comparator. Lower education, income and social status were also risk factors.
Conclusions
Timely identification and interventions are imperative for policy makers and healthcare providers to prevent trauma from worsening in this population group.
Interface-resolved direct numerical simulations (DNS) of clustered settling suspensions in a periodic domain are performed to study the filtered drag force for clustered particle-laden flows. Our results show that, for the homogeneous system, the filtered drag is independent of the filter size, whereas for the clustered particle-laden flows, the averaged drag becomes smaller than the homogeneous drag at the filter size above 4 particle diameters. The drag reduction saturates at the filter size being comparable to the cluster size in the horizontal direction in our simulations. A new correlation is proposed to account for the mesoscale effect on the filtered drag force by using drift velocity and variance of the solid volume fraction, based on the modification of existing subgrid drag models for the inhomogeneous system. The existing models for the drift velocity and the variance of the solid volume fraction are assessed using our DNS data. A new model for the drift velocity and the variance of the solid volume fraction is proposed, based on the combination and modification of the previous models. All mesoscale models considered can predict well the filtered drag with comparable accuracy, and are superior to the homogeneous drag model for the clustered system. Our models with the same parameter values obtained from the large-scale system can also predict well the filtered drag for smaller computational domain sizes.
The formation and evolution of unconfined counter-helicity spheromaks merging have been experimentally investigated by using a magnetized coaxial plasma gun. By comparing the time-dependent photodiode signals and plasma radiation images of counter-helicity spheromaks merging and plasma jets merging, it is found that the field-reversed configuration (FRC) plasma formed by counter-helicity spheromaks merging has a distinct contour and a long maintenance time. For plasma jets merging, the resulting plasma has no discernible contours and a shorter lifetime. In addition, it is inferred from these data that stagnation heating and magnetic reconnection events occur during the counter-helicity spheromaks merging, causing a rapid rise in plasma pressure at the merging midplane and sharp kinks in the field lines near the merger region. By changing different operating parameters and observing the impact on the merger characteristics, it is suggested that the qualitative dynamics of the FRC plasma depends on the balance between the plasma pressure and the magnetic pressure. The high discharge voltage breaks the equilibrium in the merged body, while the large gas-puffed mass just weakens the compression effect of the merged body. These results give us an intuitive understanding of the counter-helicity spheromak merger process and its dependence on discharge parameters, and also provide a distinct perspective for the optimal design of FRC.