We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
American silk moth, Antheraea polyphemus Cramer 1775 (Lepidoptera: Saturniidae), native to North America, has potential significance in sericulture for food consumption and silk production. To date, the phylogenetic relationship and divergence time of A. polyphemus with its Asian relatives remain unknown. To end these issues, two mitochondrial genomes (mitogenomes) of A. polyphemus from the USA and Canada respectively were determined. The mitogenomes of A. polyphemus from the USA and Canada were 15,346 and 15,345 bp in size, respectively, with only two transitions and five indels. The two mitogenomes both encoded typical mitochondrial 37 genes. No tandem repeat elements were identified in the A+T-rich region of A. polyphemus. The mitogenome-based phylogenetic analyses supported the placement of A. polyphemus within the genus Antheraea, and revealed the presence of two clades for eight Antheraea species used: one included A. polyphemus, A. assamensis Helfer, A. formosana Sonan and the other contained A. mylitta Drury, A. frithi Bouvier, A. yamamai Guérin-Méneville, A. proylei Jolly, and A. pernyi Guérin-Méneville. Mitogenome-based divergence time estimation further suggested that the dispersal of A. polyphemus from Asia into North America might have occurred during the Miocene Epoch (18.18 million years ago) across the Berling land bridge. This study reports the mitogenome of A. polyphemus that provides new insights into the phylogenetic relationship among Antheraea species and the origin of A. polyphemus.
A family of arbitrarily high-order energy-preserving methods are developed to solve the coupled Schrödinger–Boussinesq (S-B) system. The system is a nonlinear coupled system and satisfies a series of conservation laws. It is often difficult to construct a high-order decoupling numerical algorithm to solve the nonlinear system. In this paper, the original system is first reformulated into an equivalent Hamiltonian system by introducing multiple auxiliary variables. Next, the reformulated system is discretized by the Fourier pseudo-spectral method and the implicit midpoint scheme in the spatial and temporal directions, respectively, and a second-order conservative scheme is obtained. Finally, the scheme is extended to arbitrarily high-order accuracy by means of diagonally implicit symplectic Runge–Kutta methods or composition methods. Rigorous analyses show that the proposed methods are fully decoupled and can precisely conserve the discrete invariants. Numerical results show that the proposed schemes are effective and can be easily extended to other nonlinear partial differential equations.
Offspring’s education can serve as a valuable channel of resource transfer and social mobility for older parents, especially those with lower socio-economic status owing to its potential impact on health. However, there is a notable gap in research exploring the health consequences of intergenerational educational mobility, particularly across different ages and genders. This study considers the market and family spheres, and proposes a dual-axis model of resource allocation. Utilizing data from the China Longitudinal Aging Social Survey from 2014 to 2020, it investigates the impact of intergenerational educational mobility on the health of rural older Chinese parents and the underlying mechanisms by which the different impacts work. It reveals that intergenerational educational mobility affects the health of older parents through the dual axes of market and family-based economic resource transmission. Senior parents suffer more negative effects from downward mobility than younger contemporaries, and older mothers benefit more from upward mobility than fathers. Upward educational mobility could improve the health of older parents through increased offspring income, whereas significant intergenerational financial support has only a substantial impact on older health when the educational mobility distance is greater. This underscores the importance of considering intergenerational educational mobility in understanding health outcomes and provides new insights into the relationships between mechanism variables. It suggests that policy makers should focus on improving the educational environment, supporting parental investment in education and expanding educational opportunities for younger generations, to enhance the health and wellbeing of older generations by fostering positive intergenerational dynamics and resource allocation.
Germplasm resources are the foundation for improving crop varieties and a strategic asset for global food security. They also advance plant breeding, agricultural biotechnology and the production of essential agricultural goods. To assess the distribution, diversity and conservation status of food crop germplasm in the Hainan Province, China, we conducted a detailed survey of the Hainan Island. Between 2017 and 2022, we collected 330 food crop germplasm resources, encompassing 16 cereal crops, including rice, maize, sweet potato. The collected germplasm resources exhibited traits of high resistance to both biotic and abiotic stresses, including common diseases and drought stress, as well as superior quality and adaptability to poor soil conditions such as sandy land. However, challenges such as low productivity and hybrid degradation were identified. These resources were primarily found in Haikou City, Baisha County, Danzhou City, Wuzhishan City and Sanya City. Additionally, we collected several ancient local varieties and endangered germplasm resources such as ‘Jiezi rice’ and ‘Wuzhishan maize’. This study serves as a reference for the conservation, development and utilization of local food crop germplasm resources in Hainan Province and lays the foundation for breeding and developing new varieties.
In this paper, we study asymptotic behaviors of a subcritical branching Brownian motion with drift $-\rho$, killed upon exiting $(0, \infty)$, and offspring distribution $\{p_k{:}\; k\ge 0\}$. Let $\widetilde{\zeta}^{-\rho}$ be the extinction time of this subcritical branching killed Brownian motion, $\widetilde{M}_t^{-\rho}$ the maximal position of all the particles alive at time t and $\widetilde{M}^{-\rho}:\!=\max_{t\ge 0}\widetilde{M}_t^{-\rho}$ the all-time maximal position. Let $\mathbb{P}_x$ be the law of this subcritical branching killed Brownian motion when the initial particle is located at $x\in (0,\infty)$. Under the assumption $\sum_{k=1}^\infty k ({\log}\; k) p_k <\infty$, we establish the decay rates of $\mathbb{P}_x(\widetilde{\zeta}^{-\rho}>t)$ and $\mathbb{P}_x(\widetilde{M}^{-\rho}>y)$ as t and y respectively tend to $\infty$. We also establish the decay rate of $\mathbb{P}_x(\widetilde{M}_t^{-\rho}> z(t,\rho))$ as $t\to\infty$, where $z(t,\rho)=\sqrt{t}z-\rho t$ for $\rho\leq 0$ and $z(t,\rho)=z$ for $\rho>0$. As a consequence, we obtain a Yaglom-type limit theorem.
Cargo carrying by a spring connected chiral micro-swimmer in a square channel is numerical studied by the three-dimensional lattice Boltzmann method and a chiral squirmer model. The effects of the driving type (β), swimming Reynolds number (Rep), spin coefficient (ξ) and diameter ratio (S) on the changes of the cargo-carrying velocity, spring length and motion modes are investigated, respectively. Four kinds of interesting motion modes are observed. When the chirality is not considered, the optimal combination for maximising swimming velocity are the pusher–cargo and cargo–puller configurations when Rep = 0.1 ∼ 1. When Rep is enhanced, the swimming velocities of the pusher–cargo, puller–cargo and cargo–pusher are increased, while the velocity of the cargo–puller is gradually decreased. When considering the chirality, only the swimming velocity of cargo–pusher and cargo–puller keep an interesting increment, and the reverse motion mode for the pusher-cargo and puller-cargo is firstly found in the present work when ξ exceeds a certain value. The impact of S on the cargo-carrying behaviour is complex, three kinds of oscillatory trajectories will appear under different ξ and S. The swimming velocity is reduced and even zero velocity will be observed when S is large. This work reveals key factors on the movement of microorganisms, offering guidance for improving cargo-carrying capabilities.
The attachment-line boundary layer is critical in hypersonic flows because of its significant impact on heat transfer and aerodynamic performance. In this study, high-fidelity numerical simulations are conducted to analyse the subcritical roughness-induced laminar–turbulent transition at the leading-edge attachment-line boundary layer of a blunt swept body under hypersonic conditions. This simulation represents a significant advancement by successfully reproducing the complete leading-edge contamination process induced by a surface roughness element in a realistic configuration, thereby providing previously unattainable insights. Two roughness elements of different heights are examined. For the lower-height roughness element, additional unsteady perturbations are required to trigger a transition in the wake, suggesting that the flow field around the roughness element acts as a perturbation amplifier for upstream perturbations. Conversely, a higher roughness element can independently induce the transition. A low-frequency absolute instability is detected behind the roughness, leading to the formation of streaks. The secondary instabilities of these streaks are identified as the direct cause of the final transition.
Political connections have been tested for correlation with outward foreign direct investment (OFDI). Both theoretical rationale and research evidence are mixed. To advance this debate, we conceptualize political connections as a dual-dimensional construct and hypothesize the differential effects of the breadth and the depth of political connections on OFDI. Employing a sample of 2,374 Chinese listed firms, encompassing 15,647 firm-year observations from 2008 to 2016, we find evidence supporting our hypotheses: (1) the breadth of political connections reduces the likelihood of a firm engaging in OFDI and (2) greater depth of political connections increases the likelihood of a firm engaging in the OFDI. Thus, we advise firms to exercise caution when adopting corporate political strategies for internationalization in general and OFDI in particular.
This paper provides an overview of the current status of ultrafast and ultra-intense lasers with peak powers exceeding 100 TW and examines the research activities in high-energy-density physics within China. Currently, 10 high-intensity lasers with powers over 100 TW are operational, and about 10 additional lasers are being constructed at various institutes and universities. These facilities operate either independently or are combined with one another, thereby offering substantial support for both Chinese and international research and development efforts in high-energy-density physics.
Knowledge of the critical periods of crop–weed competition is crucial for designing weed management strategies in cropping systems. In the Lower Yangtze Valley, China, field experiments were conducted in 2011 and 2012 to study the effect of interference from mixed natural weed populations on cotton growth and yield and to determine the critical period for weed control (CPWC) in direct-seeded cotton. Two treatments were applied: allowing weeds to infest the crop or keeping plots weed-free for increasing periods (0, 1, 2, 4, 6, 8, 10, 12, 14, and 20 wk) after crop emergence. The results show that mixed natural weed infestations led to 35- to 55-cm shorter cotton plants with stem diameters 10 to 13 mm smaller throughout the season, fitting well with modified Gompertz and logistic models, respectively. Season-long competition with weeds reduced the number of fruit branches per plant by 65% to 82%, decreasing boll number per plant by 86% to 96% and single boll weight by approximately 24%. Weed-free seed cotton yields ranged from 2,900 to 3,130 kg ha−1, while yield loss increased with the duration of weed infestation, reaching up to 83% to 96% compared with permanent weed-free plots. Modified Gompertz and logistic models were used to analyze the impact of increasing weed control duration and weed interference on relative seed cotton yield (percentage of season-long weed-free cotton), respectively. Based on a 5% yield loss threshold, the CPWC was found to be from 145 to 994 growing degree days (GDD), corresponding to 14 to 85 d after emergence (DAE). These findings emphasize the importance of implementing effective weed control measures from 14 to 85 DAE in the Lower Yangtze Valley to prevent crop losses exceeding a 5% yield loss threshold.
The betatron radiation source features a micrometer-scale source size, a femtosecond-scale pulse duration, milliradian-level divergence angles and a broad spectrum exceeding tens of keV. It is conducive to the high-contrast imaging of minute structures and for investigating interdisciplinary ultrafast processes. In this study, we present a betatron X-ray source derived from a high-charge, high-energy electron beam through a laser wakefield accelerator driven by the 1 PW/0.1 Hz laser system at the Shanghai Superintense Ultrafast Laser Facility (SULF). The critical energy of the betatron X-ray source is 22 ± 5 keV. The maximum X-ray flux reaches up to 4 × 109 photons for each shot in the spectral range of 5–30 keV. Correspondingly, the experiment demonstrates a peak brightness of 1.0 × 1023 photons·s−1·mm−2·mrad−2·0.1%BW−1, comparable to those demonstrated by third-generation synchrotron light sources. In addition, the imaging capability of the betatron X-ray source is validated. This study lays the foundation for future imaging applications.
The emotion regulation network (ERN) in the brain provides a framework for understanding the neuropathology of affective disorders. Although previous neuroimaging studies have investigated the neurobiological correlates of the ERN in major depressive disorder (MDD), whether patients with MDD exhibit abnormal functional connectivity (FC) patterns in the ERN and whether the abnormal FC in the ERN can serve as a therapeutic response signature remain unclear.
Methods
A large functional magnetic resonance imaging dataset comprising 709 patients with MDD and 725 healthy controls (HCs) recruited across five sites was analyzed. Using a seed-based FC approach, we first investigated the group differences in whole-brain resting-state FC of the 14 ERN seeds between participants with and without MDD. Furthermore, an independent sample (45 MDD patients) was used to evaluate the relationship between the aforementioned abnormal FC in the ERN and symptom improvement after 8 weeks of antidepressant monotherapy.
Results
Compared to the HCs, patients with MDD exhibited aberrant FC between 7 ERN seeds and several cortical and subcortical areas, including the bilateral middle temporal gyrus, bilateral occipital gyrus, right thalamus, calcarine cortex, middle frontal gyrus, and the bilateral superior temporal gyrus. In an independent sample, these aberrant FCs in the ERN were negatively correlated with the reduction rate of the HAMD17 score among MDD patients.
Conclusions
These results might extend our understanding of the neurobiological underpinnings underlying unadaptable or inflexible emotional processing in MDD patients and help to elucidate the mechanisms of therapeutic response.
In this paper, we study the rapid transition in Richtmyer–Meshkov instability (RMI) with reshock through three-dimensional double-layer swirling vortex rings. The rapid transition in RMI with reshock has an essential influence on the evolution of supernovas and the ignition of inertial confinement fusion, which has been confirmed in numerical simulations and experiments in shock-tube and high-energy-density facilities over the past few years. Vortex evolution has been confirmed to dominate the late-time nonlinear development of the perturbed interface. However, few studies have investigated the three-dimensional characteristics and nonlinear interactions among vortex structures during the transition to turbulent flows. The coexistence of co-rotating and counter-rotating vortices is hypothesized to induce successive large-scale strain fields, which are the main driving sources for rapid development. The three-dimensional effect is reflected in the presence of local swirling motion in the azimuthal direction, and it decreases the translation velocity of a vortex ring. Large-, middle- and small-scale strain fields are employed to describe the development process of RMI with reshock, e.g. vorticity deposited by the reshock, formation of the coexistence of the co-rotating and counter-rotating vortices, iterative cascade under the amplification of the strain fields and viscous dissipation to internal energy. This provides theoretical suggestions for designing practical applications, such as the estimation of the hydrodynamic instability and mixing during the late-time acceleration phase of the inertial confinement fusion.
An advanced deformable Kirkpatrick–Baez (K-B) mirror system was developed, equipped with high-speed piezoelectric actuators, and designed to induce beam decoherence and significantly enhance the quality of X-ray imaging by minimizing undesirable speckles in synchrotron radiation or free-electron laser facilities. Each individual mirror is engineered with 36 independent piezoelectric actuators that operate in a randomized manner, orchestrating the mirror surface to oscillate at a high frequency up to 100 kHz. Through in situ imaging single-slit diffraction measurement, it has been demonstrated that this high-frequency-vibration mirror system is pivotal in disrupting the coherent nature, thereby diminishing speckle formation. The impact of the K-B mirror system is profound, with the capability to reduce the image contrast to as low as 0.04, signifying a substantial reduction in speckle visibility. Moreover, the coherence of the X-ray beam is significantly lowered from an initial value exceeding 80% to 13%.
Attention-deficit/hyperactivity disorder (ADHD) patients exhibit characteristics of impaired working memory (WM) and diminished sensory processing function. This study aimed to identify the neurophysiologic basis underlying the association between visual WM and auditory processing function in children with ADHD.
Methods
The participants included 86 children with ADHD (aged 6–15 years, mean age 9.66 years, 70 boys, and 16 girls) and 90 typically developing (TD) children (aged 7–16 years, mean age 10.30 years, 66 boys, and 24 girls). Electroencephalograms were recorded from all participants while they performed an auditory discrimination task (oddball task). The visual WM capacity and ADHD symptom severity were measured for all participants.
Results
Compared with TD children, children with ADHD presented a poorer visual WM capacity and a smaller mismatch negativity (MMN) amplitude. Notably, the smaller MMN amplitude in children with ADHD predicted a less impaired WM capacity and milder inattention symptom severity. In contrast, the larger MMN amplitude in TD children predicted a better visual WM capacity.
Conclusions
Our results suggest an intimate relationship and potential shared mechanism between visual WM and auditory processing function. We liken this shared mechanism to a total cognitive resource limit that varies between groups of children, which could drive correlated individual differences in auditory processing function and visual WM. Our findings provide a neurophysiological correlate for reports of WM deficits in ADHD patients and indicate potential effective markers for clinical intervention.
This paper presents a numerical study on the flow around two tandem circular cylinders beneath a free surface at a Reynolds number of $180$. The free-surface effects on the wake dynamics and hydrodynamic forces are investigated through a parametric study, covering a parameter space of gap ratios from $0.20$ to $2.00$, spacing ratios from $1.50$ to $4.00$ and Froude numbers from $0.2$ to $0.8$. A jet-like flow accompanied by a shear layer of positive vorticity separating from the free surface is formed in the wake at small gap ratios, which significantly alters the wake pattern through its dynamic behaviours. At shallow submergence depths, the three-dimensional wake transitions from mode B to mode A as the distance between the cylinders increases. As submergence depth increases, the wavy deformation of the primary vortex cores disappears in the wake, and the flow transitions to a two-dimensional state. Higher Froude numbers can extend the effect of the free surface to deeper submergence depths. The critical spacing ratio tends to be larger at higher Froude numbers. Furthermore, the free-surface deformation is examined. The free-surface profile typically comprises a hydraulic jump immediately ahead of the upstream cylinder, trapped waves in the vicinity of the two tandem cylinders and well-defined travelling waves on the downstream side. The frequencies of the waves cluster around the vortex shedding frequency, indicating a close association between the generation of waves and the vortex shedding process.
This study investigates the flow structures and combustion regimes in an axisymmetric cavity-based scramjet combustor with a total temperature of 1800 K and a high Reynolds number of approximately 1 × 107. The hydroxyl planar laser-induced fluorescence technique, along with the broadband flame emission and CH* chemiluminescence, is employed to visualize the instantaneous flame structure in the optically accessible cavity. The jet-wake flame stabilization mode is observed, with intense heat release occurring in the jet wake upstream of the cavity. A hybrid Reynolds-averaged Navier–Stokes/large-eddy simulation approach is performed for the 0.18-equivalent-ratio case with a pressure-corrected flamelet/progress variable model. The combustion regime is identified mainly in the corrugated or wrinkled flamelet regime (approximately 102 < Da < 104, 103 < Ret < 105 where $Da$ is the Damköhler number and $Re_t$ is the turbulent Reynolds number). The combustion process is jointly dominated by supersonic combustion (which accounts for approximately 58 %) and subsonic combustion, although subsonic combustion has a higher heat release rate (peak value exceeding 1 × 109 J (m3s)−1). A partially premixed flame is observed, where the diffusion flame packages a considerable quantity of twisted premixed flame. The shockwave plays a critical role in generating vorticity by strengthening the volumetric expansion and baroclinic torque term, and it can facilitate the chemical reaction rates through the pressure and temperature surges, thereby enhancing the combustion. Combustion also shows a remarkable effect on the overall flow structures, and it drives alterations in the vorticity of the flow field. In turn, the turbulent flow facilitates the combustion and improves the flame stabilization by enhancing the reactant mixing and increasing the flame surface area.
The sustainability of high-level radioactive waste repositories situated in fractured crystalline rocks depends on the stability of bentonite liners, and this can pose a problem in certain groundwater conditions that favor the formation of colloids from backfill materials that are prone to erosion. The influence of different environments on the structure of Gaomiaozi bentonite (GMZ) and GMZ colloids (GMZC) is presented here. Different hydrated interlayer structures of bulk and colloidal forms of this bentonite from small-angle X-ray scattering (SAXS) data are demonstrated. Analysis of the scattering data showed that GMZ had three interlayer water structures: dehydrated (0W), monohydrated (1W), and bi-hydrated (2W). The colloids readily agglomerated at acidic pH (pH <5) but showed resistance to agglomeration in an alkaline condition (pH >7). The effect of Na+, K+, Mg2+, and Ca2+ on the lamellar structure and agglomerate morphology of GMZC particles was investigated. In general, the tendency of colloids to agglomerate was greater in the presence of divalent metal cations compared with monovalent metal cations. High concentrations (10–5 to 10–3 mol L–1) of divalent ions imparted order into the stacked lamellar structure after the saturation of the interlayer. In contrast, monovalent ions reduced the tendency of the particles to aggregate, leading to an abundance of colloidal nanoparticles prone to erosion. This work helps to better understand the structural characteristics of GMZC in the groundwater environment, and provides a valuable reference for the evaluation of nuclide migration in the deep geological disposal of high-level radioactive wastes.