We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This manuscript presents a novel three-series-only topology P-insulator-N (PIN) diode single-pole-double-through (SPDT) switch designed to address the challenges of high power handling and low insertion loss in Q-band and V-band communication systems. The manuscript provides a detailed theoretical analysis of series-connected PIN diodes, offering insights into their behavior under both small- and large-signal conditions. Based on GaAs PIN diode technology, the switch operates across a frequency range of 37.7 to 61 GHz, achieving a low insertion loss of 0.707 dB and providing an isolation of 24.6 dB. The proposed SPDT switch demonstrates a high $\text{IP}_{\text{0.1~dB}}$ of 37.6 dBm at 38 GHz. With a compact chip size of $0.905\times 0.885 \text{mm}^2$, including all pads, this work offers excellent power handling capability, making it highly suitable for advanced communication systems in Q-band and V-band applications.
Asian corn borer, Ostrinia furnacalis Guenée (Lepidoptera: Crambidae), is a major pest in corn production, and its management remains a significant challenge. Current control methods, which rely heavily on synthetic chemical pesticides, are environmentally detrimental and unsustainable, necessitating the development of eco-friendly alternatives. This study investigates the potential of the entomopathogenic nematode Steinernema carpocapsae as a biological control agent for O. furnacalis pupae, focusing on its infection efficacy and the factors influencing its performance. We conducted a series of laboratory experiments to evaluate the effects of distance, pupal developmental stage, soil depth, and light conditions on nematode attraction, pupal mortality and sublethal impacts on pupal longevity and oviposition. Results demonstrated that S. carpocapsae exhibited the highest attraction to pupae at a 3 cm distance, with infection declining significantly at greater distances. Younger pupae (<12 h old), were more attractive to nematodes than older pupae, and female pupae were preferred over males. Nematode infection was highest on the head and thorax of pupae, with a significant reduction in infection observed after 24 h. Infection caused 100% mortality in pupae within 2 cm soil depth, though efficacy was reduced under light conditions. Sublethal effects included a significant reduction in the longevity of infected adults and a decrease in the number of eggs laid by infected females compared to controls. These findings underscore the potential of S. carpocapsae as an effective biocontrol agent for sustainable pest management in corn production, offering a viable alternative to chemical pesticides.
We investigate the statistical properties of kinetic and thermal dissipation rates in two-dimensional/three-dimensional vertical convection of liquid metal ($Pr = 0.032$) within a square cavity. Two situations are specifically discussed: (i) classical vertical convection with no external forces and (ii) vertical magnetoconvection with a horizontal magnetic field. Through an analysis of dissipation fields and a reasonable approximation of buoyancy potential energy sourced from vertical heat flux, the issue of the ‘non-closure of the dissipation balance relation’, which has hindered the application of the GL theory in vertical convection, is partially resolved. The resulting asymptotic power laws are consistent with existing laminar scaling theories and even show certain advantages in validating simulations with large Prandtl number ($Pr$). Additionally, a full-parameter model and prefactors applicable to low-$Pr$ fluids are provided. The extension to magnetoconvection naturally introduces the approximate expression for total buoyancy potential energy and necessitates adjustments to the contributions of kinetic dissipation in both the bulk and boundary layer. The flow dimensionality and boundary layer thickness are key considerations in this analysis. The comprehension of Joule dissipation has been updated: the Lorentz force generates positive dissipation in the bulk by suppressing convection, while in the Hartmann layer, shaping the exponential boundary layer requires the fluid to perform positive work to accelerate, leading to negative dissipation. Finally, the proposed transport equations for magnetoconvection are supported by current direct numerical simulation (DNS) and literature data, and the applicability of the model is discussed.
Hand, foot, and mouth disease (HFMD) shows spatiotemporal heterogeneity in China. A spatiotemporal filtering model was constructed and applied to HFMD data to explore the underlying spatiotemporal structure of the disease and determine the impact of different spatiotemporal weight matrices on the results. HFMD cases and covariate data in East China were collected between 2009 and 2015. The different spatiotemporal weight matrices formed by Rook, K-nearest neighbour (KNN; K = 1), distance, and second-order spatial weight matrices (SO-SWM) with first-order temporal weight matrices in contemporaneous and lagged forms were decomposed, and spatiotemporal filtering model was constructed by selecting eigenvectors according to MC and the AIC. We used MI, standard deviation of the regression coefficients, and five indices (AIC, BIC, DIC, R2, and MSE) to compare the spatiotemporal filtering model with a Bayesian spatiotemporal model. The eigenvectors effectively removed spatial correlation in the model residuals (Moran’s I < 0.2, p > 0.05). The Bayesian spatiotemporal model’s Rook weight matrix outperformed others. The spatiotemporal filtering model with SO-SWM was superior, as shown by lower AIC (92,029.60), BIC (92,681.20), and MSE (418,022.7) values, and higher R2 (0.56) value. All spatiotemporal contemporaneous structures outperformed the lagged structures. Additionally, eigenvector maps from the Rook and SO-SWM closely resembled incidence patterns of HFMD.
Little is known about the association between iodine nutrition status and bone health. The present study aimed to explore the connection between iodine nutrition status, bone metabolism parameters, and bone disease (osteopenia and osteoporosis). A cross-sectional survey was conducted involving 391, 395, and 421 adults from iodine fortification areas (IFA), iodine adequate areas (IAA), and iodine excess areas (IEA) of China. Iodine nutrition status, bone metabolism parameters and BMD were measured. Our results showed that, in IEA, the urine iodine concentrations (UIC) and serum iodine concentrations (SIC) were significantly higher than in IAA. BMD and Ca2+ levels were significantly different under different iodine nutrition levels and the BMD were negatively correlated with UIC and SIC. Univariate linear regression showed that gender, age, BMI, menopausal status, smoking status, alcohol consumption, UIC, SIC, free thyroxine, TSH, and alkaline phosphatase were associated with BMD. The prevalence of osteopenia was significantly increased in IEA, UIC ≥ 300 µg/l and SIC > 90 µg/l groups. UIC ≥ 300 µg/l and SIC > 90 µg/l were risk factors for BMD T value < –1·0 sd. In conclusion, excess iodine can not only lead to changes in bone metabolism parameters and BMD, but is also a risk factor for osteopenia and osteoporosis.
Language control in the bilingual brain has remained in the limelight of research over the past decades. However, the mechanisms underlying bilingual language control may be more intricate than typically assumed due to the hierarchical nature of language. This study aimed to investigate the dynamics of bilingual language control at the phonetic level. Participants, who were speakers of Chinese, English and German, named the letters of the alphabet in English (L2) or German (L3) following an alternating language-switching paradigm. Two sets of letters were selected, differing in the phonological similarity of their pronunciation across the two languages, thereby allowing the exploration of cross-language phonological influences. Each participant completed two sessions of letter-naming tasks. In one session, seven phonologically similar letters were randomly repeated either in single-language blocks or in alternate-language blocks. In the other session, seven phonologically dissimilar letters were similarly manipulated. The results indicated local inhibition, reflected by switch costs and global inhibition, reflected by mixing costs. Reversed language dominance, another indicator of global inhibition, was not observed. However, there was a tendency for larger global inhibition to be applied to the more dominant language. Moreover, there was significantly faster naming for phonologically similar letters compared to dissimilar ones, suggesting a facilitation effect for both English and German, irrespective of whether letter naming occurred in single- or alternate-language blocks. These findings provided evidence for the role of inhibitory and facilitative mechanisms at the phonetic level, suggesting language-specific control in the bilingual brain and underscoring the complexity and dynamics of managing language control across multiple levels of processing.
The emotion regulation network (ERN) in the brain provides a framework for understanding the neuropathology of affective disorders. Although previous neuroimaging studies have investigated the neurobiological correlates of the ERN in major depressive disorder (MDD), whether patients with MDD exhibit abnormal functional connectivity (FC) patterns in the ERN and whether the abnormal FC in the ERN can serve as a therapeutic response signature remain unclear.
Methods
A large functional magnetic resonance imaging dataset comprising 709 patients with MDD and 725 healthy controls (HCs) recruited across five sites was analyzed. Using a seed-based FC approach, we first investigated the group differences in whole-brain resting-state FC of the 14 ERN seeds between participants with and without MDD. Furthermore, an independent sample (45 MDD patients) was used to evaluate the relationship between the aforementioned abnormal FC in the ERN and symptom improvement after 8 weeks of antidepressant monotherapy.
Results
Compared to the HCs, patients with MDD exhibited aberrant FC between 7 ERN seeds and several cortical and subcortical areas, including the bilateral middle temporal gyrus, bilateral occipital gyrus, right thalamus, calcarine cortex, middle frontal gyrus, and the bilateral superior temporal gyrus. In an independent sample, these aberrant FCs in the ERN were negatively correlated with the reduction rate of the HAMD17 score among MDD patients.
Conclusions
These results might extend our understanding of the neurobiological underpinnings underlying unadaptable or inflexible emotional processing in MDD patients and help to elucidate the mechanisms of therapeutic response.
There is an increasing number of policy and guidance documents on the use and acceptability of real-world evidence (RWE) to support regulatory and health technology assessment (HTA) decision-making. The Innovative Health Initiative Integration of Heterogeneous Data and Evidence towards Regulatory and HTA Acceptance (IDERHA) partnership is undertaking a global landscape review of these documents to understand where there is consensus and divergence, and where further policy development is needed.
Methods
A literature search of the MEDLINE and Embase databases was performed, in addition to handsearching the websites of specific HTA and regulatory organizations. All policies, standards, frameworks, and guidance documents on requirements for acceptable RWE data use published from 2017 were included. Two reviewers independently extracted data using a standard data extraction form that was pilot tested before use. Any discrepancies between the reviewers were resolved by consensus. Extracted data are currently being analyzed by researchers with regulatory or HTA expertise. A workshop held in October 2023 sought input from experts on analysis plans.
Results
The initial literature search yielded 3,184 results. After screening against the inclusion criteria, a total of 87 documents were selected for full-text review (21 HTA and 62 regulatory documents). Of these, 32 were identified as key documents and prioritized for initial review. Key themes in the documents, including transparency, data collection, study design, and data quality, were identified and validated in a workshop with five regulatory or HTA experts. Data extraction is ongoing for the remaining documents and any further themes identified will be added. Any gaps and areas of divergence will be identified, so they can be addressed by future IDERHA work.
Conclusions
This review assessed the increasingly complex global landscape of regulatory and HTA policies and guidance on the use of RWE. Through the exploration of similarities, differences, and gaps in these policies, this work will extend the current understanding of best practice and identify areas that need development of further guidance.
As a required sample preparation method for 14C graphite, the Zn-Fe reduction method has been widely used in various laboratories. However, there is still insufficient research to improve the efficiency of graphite synthesis, reduce modern carbon contamination, and test other condition methodologies at Guangxi Normal University (GXNU). In this work, the experimental parameters, such as the reduction temperature, reaction time, reagent dose, Fe powder pretreatment, and other factors, in the Zn-Fe flame sealing reduction method for 14C graphite samples were explored and determined. The background induced by the sample preparation process was (2.06 ± 0.55) × 10–15, while the 12C– beam current were better than 40μA. The results provide essential instructions for preparing 14C graphite of ∼1 mg at the GXNU lab and technical support for the development of 14C dating and tracing, contributing to biology and environmental science.
Informal music learning, pioneered by Green (2002, 2006, 2017), presents an alternative approach that integrates students’ interests in popular music, bridging the informal and traditional styles of Western music education in schools. We conducted a scoping review adhering to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines to investigate informal music learning. Our scoping review encompasses 28 empirical, peer-reviewed articles published from 2006 to 2023. First, we analyse the diverse contexts, methodologies and geographic locations in which informal music learning has been investigated. Second, we explore how different stakeholders perceive and engage with informal music learning in various educational settings. Lastly, we summarise the implications derived from the analysed studies on informal music learning. Our findings reveal that across various educational contexts, informal music learning has consistently demonstrated its positive impact in motivating students. We also find that researchers have extended their investigations from programme reform to exploring pupil and teacher’s musical identities. Recommendations for future research include exploring informal music learning in ensembles and elementary music classrooms and employing quantitative or mixed methods to assess its effectiveness and impact.
This paper proposes an air-filled substrate integrated waveguide (AFSIW) bandpass filter with a miniaturized non-resonant node (NRN). The NRN structure is introduced between the three resonators, and its size is smaller than the resonator size, which can realize the NRN structure’s miniaturization and reduce the model’s size. The NRN size of this filter is 41% of the NRN size of the existing AFSIW filter. This filter also introduces a transmission zero (TZ) above the passband. The measured results show that the filter’s center frequency is 20.73 GHz, and the bandwidth is 0.86 GHz. The insertion loss in the passband is 0.95 dB, and the return loss is better than 23 dB. Due to the TZ in the upper stopband, the AFSIW filter obtained good selectivity.
The absorption and distribution of radiocarbon-labeled urea at the ultratrace level were investigated with a 14C-AMS biotracer method. The radiopharmaceutical concentrations in the plasma, heart, liver, spleen, lung, kidney, stomach, brain, bladder, muscle, testis, and fat of rats after oral administration of 14C urea at ultratrace doses were determined by AMS, and the concentration-time curves in plasma and tissues and pharmacokinetic distribution data were obtained. This study provides an analytical method for the pharmacokinetic parameters and tissue distribution of exogenous urea in rats at ultratrace doses and explores the feasibility of evaluation and long-term tracking of ultratrace doses of drugs with AMS.
The assessment of seed quality and physiological potential is essential in seed production and crop breeding. In the process of rapid detection of seed viability using tetrazolium (TZ) staining, it is necessary to spend a lot of labour and material resources to explore the pretreatment and staining methods of hard and solid seeds with physical barriers. This study explores the TZ staining methods of six hard seeds (Tilia miqueliana, Tilia henryana, Sassafras tzumu, Prunus subhirtella, Prunus sibirica, and Juglans mandshurica) and summarizes the TZ staining conditions required for hard seeds by combining the difference in fat content between seeds and the kinship between species, thus providing a rapid viability test method for the protection of germplasm resources of endangered plants and the optimization of seed bank construction. The TZ staining of six species of hard seeds requires a staining temperature above 35 °C and a TZ solution concentration higher than 1%. Endospermic seeds require shorter staining times than exalbuminous seeds. The higher the fat content of the seeds, the lower the required incubation temperature and TZ concentration for staining, and the longer the staining time. And the closer the relationship between the two species, the more similar their staining conditions become. The TZ staining method of similar species can be predicted according to the genetic distance between the phylogenetic trees, and the viability of new species can be detected quickly.
Chinese nurses working with immense stress may have issues with burnout during COVID-19 regular prevention and control. There were a few studies investigating status of burnout and associated factors among Chinese nurses. However, the relationships remained unclear.
Objectives
To investigate status and associated factors of nurses’ burnout during COVID-19 regular prevention and control.
Methods
784 nurses completed questionnaires including demographics, Generalized Anxiety Disorder-7, Patient Health Questionnaire-9, Insomnia Severity Index, Impact of Event Scale-revised, Perceived Social Support Scale, Connor–Davidson Resilience Scale, General Self-efficacy Scale and Maslach Burnout Inventory.
Results
310 (39.5%), 393 (50.1%) and 576 (73.5%) of respondents were at high risk of emotional exhaustion (EE), depersonalization (DP) and reduced personal accomplishment (PA). The risk of EE, DP and reduced PA were moderate, high and high. Nurses with intermediate and senior professional rank and title and worked >40 h every week had lower scores in EE. Those worked in low-risk department reported lower scores in PA. Anxiety, post-traumatic stress disorder (PTSD), self-efficacy and social support were influencing factors of EE and DP, while social support and resilience were associated factors of PA.
Conclusion
Chinese nurses’ burnout during COVID-19 regular prevention and control was serious. Professional rank and title, working unit, weekly working hours, anxiety, PTSD, self-efficacy, social support and resilience were associated factors of burnout.
Vegetables are known to be beneficial to human health, but the association between vegetable consumption and gastric cancer remains uncertain. To synthesise knowledge about the relationship between vegetable group consumption and gastric cancer risk, update present meta-analyses and estimate associations between vegetable consumption and gastric cancer risk based solely on prospective studies, we perform a PRISMA-compliant three-level meta-analysis. Systematic search identified thirteen prospective studies with fifty-two effect sizes that met all inclusion criteria and no exclusion criteria for our meta-analysis. Pooled risk ratios (RRs) showed a positive association between high vegetable consumption and low gastric cancer risk (pooled RR 0·93, 95% confidence interval 0·90–0·97, P = 0·06). In moderator analyses for indicators of gender, region and quantity of vegetable intake, there was no significant difference between subgroups. However, the effect became significant in populations with lower than the minimum risk exposure level (TMREL) of vegetable consumption (P < 0·05). Higher vegetable intake is associated with a decreased risk of gastric cancer. This effect may be limited to specific populations, such as ones with lower vegetable consumption. Evidence from our study has important public health implications for dietary recommendations.
The Righi–Leduc heat flux generated by the self-generated magnetic field in the ablative Rayleigh–Taylor instability driven by a laser irradiating thin targets is studied through two-dimensional extended-magnetohydrodynamic simulations. The perturbation structure gets into a low magnetization state though the peak strength of the self-generated magnetic field could reach hundreds of teslas. The Righi–Leduc effect plays an essential impact both in the linear and nonlinear stages, and it deflects the total heat flux towards the spike base. Compared to the case without the self-generated magnetic field included, less heat flux is concentrated at the spike tip, finally mitigating the ablative stabilization and leading to an increase in the velocity of the spike tip. It is shown that the linear growth rate is increased by about 10% and the amplitude during the nonlinear stage is increased by even more than 10% due to the feedback of the magnetic field, respectively. Our results reveal the importance of Righi–Leduc heat flux to the growth of the instability and promote deep understanding of the instability evolution together with the self-generated magnetic field, especially during the acceleration stage in inertial confinement fusion.
This study aims to gain insight into each attribute as presented in the value of implantable medical devices, quantify attributes’ strength and their relative importance, and identify the determinants of stakeholders’ preferences.
Methods
A mixed-methods design was used to identify attributes and levels reflecting stakeholders’ preference toward the value of implantable medical devices. This design combined literature reviewing, expert’s consultation, one-on-one interactions with stakeholders, and a pilot testing. Based on the design, six attributes and their levels were settled. Among 144 hypothetical profiles, 30 optimal choice sets were developed, and healthcare professionals (decision-makers, health technology assessment experts, hospital administrators, medical doctors) and patients as stakeholders in China were surveyed. A total of 134 respondents participated in the survey. Results were analyzed by mixed logit model and conditional logit model.
Results
The results of the mixed logit model showed that all the six attributes had a significant impact on respondents’ choices on implantable medical devices. Respondents were willing to pay the highest for medical devices that provided improvements in clinical safety, followed by increased clinical effectiveness, technology for treating severe diseases, improved implement capacity, and innovative technology (without substitutes).
Conclusions
The findings of DCE will improve the current evaluation on the value of implantable medical devices in China and provide decision-makers with the relative importance of the criteria in pricing and reimbursement decision-making of implantable medical devices.
The Tuluanshan Formation of the eastern Coastal Range of Taiwan overlies an andesitic core complex presumed to be the source of hydrothermal fluids responsible for the Si- and Mg-rich mineralization of sepiolite and palygorskite (attapulgite) which are found in veins within fissures and in fracture zones of the volcanic rocks of the region. This study was undertaken in order to understand these relationships better by characterizing sepiolite and palygorskite in this Formation and by examining their occurrence and distribution in the Tungho (TH) and Chunjih (CJ) areas. Samples were analyzed using X-ray diffraction (XRD), thermal analysis, Fourier-transform infrared (FTIR) spectroscopy, and petrographic, scanning (SEM), and transmission (TEM) electron microscopic methods. Sepiolite and palygorskite are blocky and earthy-type materials that display fibrous characteristics when viewed using TEM and SEM and occurred alone or with chalcedony in veins. The fibers of blocky sepiolite are commonly intercalated with smectite but the earthy type of sepiolite and palygorskite observed in this study displayed precipitation from fluid enriched in Si, Al, Mg, and minor Fe and depleted in other ions at an earlier stage of offset of the andesitic veins. Continuation of reverse faulting and high shearing stress caused the precipitation of a significant quantity of interlaminated sepiolite. Sepiolite and palygorskite were formed at an earlier stage of fluid interaction relative to smectite in the Tuluanshan Formation.
Non-suicidal self-injury (NSSI) is prevalent in major depressive disorder (MDD) during adolescence, but the underlying neural mechanisms are unclear. This study aimed to investigate microstructural abnormalities in the cingulum bundle associated with NSSI and its clinical characteristics.
Methods
130 individuals completed the study, including 35 healthy controls, 47 MDD patients with NSSI, and 48 MDD patients without NSSI. We used tract-based spatial statistics (TBSS) with a region of interest (ROI) analysis to compare the fractional anisotropy (FA) of the cingulum bundle across the three groups. receiver-operating characteristics (ROC) analysis was employed to evaluate the ability of the difficulties with emotion regulation (DERS) score and mean FA of the cingulum to differentiate between the groups.
Results
MDD patients with NSSI showed reduced cingulum integrity in the left dorsal cingulum compared to MDD patients without NSSI and healthy controls. The severity of NSSI was negatively associated with cingulum integrity (r = −0.344, p = 0.005). Combining cingulum integrity and DERS scores allowed for successful differentiation between MDD patients with and without NSSI, achieving a sensitivity of 70% and specificity of 83%.
Conclusions
Our study highlights the role of the cingulum bundle in the development of NSSI in adolescents with MDD. The findings support a frontolimbic theory of emotion regulation and suggest that cingulum integrity and DERS scores may serve as potential early diagnostic tools for identifying MDD patients with NSSI.