We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Dualities of resolving subcategories of module categories over rings are introduced and characterized as dualities with respect to Wakamatsu tilting bimodules. By restriction of the dualities to smaller resolving subcategories, sufficient and necessary conditions for these bimodules to be tilting are provided. This leads to the Gorenstein version of both the Miyashita’s duality and Huisgen-Zimmermann’s correspondence. An application of resolving dualities is to show that higher algebraic K-groups and semi-derived Ringel–Hall algebras of finitely generated Gorenstein-projective modules over Artin algebras are preserved under tilting.
For a finitely dominated Poincaré duality space $M$, we show how the first author's total obstruction $\mu _M$ to the existence of a Poincaré embedding of the diagonal map $M \to M \times M$ in [17] relates to the Reidemeister trace of the identity map of $M$. We then apply this relationship to show that $\mu _M$ vanishes when suitable conditions on the fundamental group of $M$ are satisfied.
We define a class of invariants, which we call homological invariants, for persistence modules over a finite poset. Informally, a homological invariant is one that respects some homological data and takes values in the free abelian group generated by a finite set of indecomposable modules. We focus in particular on groups generated by “spread modules,” which are sometimes called “interval modules” in the persistence theory literature. We show that both the dimension vector and rank invariant are equivalent to homological invariants taking values in groups generated by spread modules. We also show that the free abelian group generated by the “single-source” spread modules gives rise to a new invariant which is finer than the rank invariant.
For a not-necessarily commutative ring $R$ we define an abelian group $W(R;M)$ of Witt vectors with coefficients in an $R$-bimodule $M$. These groups generalize the usual big Witt vectors of commutative rings and we prove that they have analogous formal properties and structure. One main result is that $W(R) := W(R;R)$ is Morita invariant in $R$. For an $R$-linear endomorphism $f$ of a finitely generated projective $R$-module we define a characteristic element $\chi _f \in W(R)$. This element is a non-commutative analogue of the classical characteristic polynomial and we show that it has similar properties. The assignment $f \mapsto \chi _f$ induces an isomorphism between a suitable completion of cyclic $K$-theory $K_0^{\mathrm {cyc}}(R)$ and $W(R)$.
Let $k$ be a field, and let ${\mathcal{C}}$ be a $k$-linear, Hom-finite triangulated category with split idempotents. In this paper, we show that under suitable circumstances, the Grothendieck group of ${\mathcal{C}}$, denoted by $K_{0}({\mathcal{C}})$, can be expressed as a quotient of the split Grothendieck group of a higher cluster tilting subcategory of ${\mathcal{C}}$. The results we prove are higher versions of results on Grothendieck groups of triangulated categories by Xiao and Zhu and by Palu. Assume that $n\geqslant 2$ is an integer; ${\mathcal{C}}$ has a Serre functor $\mathbb{S}$ and an $n$-cluster tilting subcategory ${\mathcal{T}}$ such that $\operatorname{Ind}{\mathcal{T}}$ is locally bounded. Then, for every indecomposable $M$ in ${\mathcal{T}}$, there is an Auslander–Reiten $(n+2)$-angle in ${\mathcal{T}}$ of the form $\mathbb{S}\unicode[STIX]{x1D6F4}^{-n}(M)\rightarrow T_{n-1}\rightarrow \cdots \rightarrow T_{0}\rightarrow M$ and
Assume now that $d$ is a positive integer and ${\mathcal{C}}$ has a $d$-cluster tilting subcategory ${\mathcal{S}}$ closed under $d$-suspension. Then, ${\mathcal{S}}$ is a so-called $(d+2)$-angulated category whose Grothendieck group $K_{0}({\mathcal{S}})$ can be defined as a certain quotient of $K_{0}^{\text{sp}}({\mathcal{S}})$. We will show
Moreover, assume that $n=2d$, that all the above assumptions hold, and that ${\mathcal{T}}\subseteq {\mathcal{S}}$. Then our results can be combined to express $K_{0}({\mathcal{S}})$ as a quotient of $K_{0}^{\text{sp}}({\mathcal{T}})$.
We show that a directed graph $E$ is a finite graph with no sinks if and only if, for each commutative unital ring $R$, the Leavitt path algebra $L_{R}(E)$ is isomorphic to an algebraic Cuntz–Krieger algebra if and only if the $C^{\ast }$-algebra $C^{\ast }(E)$ is unital and $\text{rank}(K_{0}(C^{\ast }(E)))=\text{rank}(K_{1}(C^{\ast }(E)))$. Let $k$ be a field and $k^{\times }$ be the group of units of $k$. When $\text{rank}(k^{\times })<\infty$, we show that the Leavitt path algebra $L_{k}(E)$ is isomorphic to an algebraic Cuntz–Krieger algebra if and only if $L_{k}(E)$ is unital and $\text{rank}(K_{1}(L_{k}(E)))=(\text{rank}(k^{\times })+1)\text{rank}(K_{0}(L_{k}(E)))$. We also show that any unital $k$-algebra which is Morita equivalent or stably isomorphic to an algebraic Cuntz–Krieger algebra, is isomorphic to an algebraic Cuntz–Krieger algebra. As a consequence, corners of algebraic Cuntz–Krieger algebras are algebraic Cuntz–Krieger algebras.
A connected space is called a C0-space if its rational cup product is trivial. A characterizing property of C0-spaces is obtained. This property is used to calculate the algebraic K0-group K0(C𝔽(X)) of the ring of continuous functions for infinite-dimensional complexes X.
In this paper we demonstrate that non-commutative localizations of arbitrary additive categories (generalizing those defined by Cohn in the setting of rings) are closely (and naturally) related to weight structures. Localizing an arbitrary triangulated category $\text{}\underline{C}$ by a set $S$ of morphisms in the heart $\text{}\underline{Hw}$ of a weight structure $w$ on it one obtains a triangulated category endowed with a weight structure $w^{\prime }$. The heart of $w^{\prime }$ is a certain version of the Karoubi envelope of the non-commutative localization $\text{}\underline{Hw}[S^{-1}]_{\mathit{add}}$ (of $\text{}\underline{Hw}$ by $S$). The functor $\text{}\underline{Hw}\rightarrow \text{}\underline{Hw}[S^{-1}]_{\mathit{add}}$ is the natural categorical version of Cohn’s localization of a ring, i.e., it is universal among additive functors that make all elements of $S$ invertible. For any additive category $\text{}\underline{A}$, taking $\text{}\underline{C}=K^{b}(\text{}\underline{A})$ we obtain a very efficient tool for computing $\text{}\underline{A}[S^{-1}]_{\mathit{add}}$; using it, we generalize the calculations of Gerasimov and Malcolmson (made for rings only). We also prove that $\text{}\underline{A}[S^{-1}]_{\mathit{add}}$ coincides with the ‘abstract’ localization $\text{}\underline{A}[S^{-1}]$ (as constructed by Gabriel and Zisman) if $S$ contains all identity morphisms of $\text{}\underline{A}$ and is closed with respect to direct sums. We apply our results to certain categories of birational motives $DM_{gm}^{o}(U)$ (generalizing those defined by Kahn and Sujatha). We define $DM_{gm}^{o}(U)$ for an arbitrary $U$ as a certain localization of $K^{b}(Cor(U))$ and obtain a weight structure for it. When $U$ is the spectrum of a perfect field, the weight structure obtained this way is compatible with the corresponding Chow and Gersten weight structures defined by the first author in previous papers. For a general $U$ the result is completely new. The existence of the corresponding adjacent$t$-structure is also a new result over a general base scheme; its heart is a certain category of birational sheaves with transfers over $U$.
We give a negative answer to the question raised by Mart Abel about whether his proposed definition of ${K}_{0} $ and ${K}_{1} $ groups in terms of quasi multiplication is indeed equivalent to the established ones in algebraic $K$-theory.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.