We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In the present work, we investigate the Lie algebra of the Formanek-Procesi group $\textrm {FP}(A_{\Gamma })$ with base group $A_{\Gamma }$ a right-angled Artin group. We show that the Lie algebra $\textrm {gr}(\textrm {FP}(A_{\Gamma }))$ has a presentation that is dictated by the group presentation. Moreover, we show that if the base group $G$ is a finitely generated residually finite $p$-group, then $\textrm { FP}(G)$ is residually nilpotent. We also show that $\textrm {FP}(A_{\Gamma })$ is a residually torsion-free nilpotent group.
This paper presents a classification of all simple Harish-Chandra modules for the $N=1$ Heisenberg–Virasoro superalgebra, which turn out to be highest weight modules, lowest weight modules, and evaluation modules of the intermediate series (all weight spaces are one dimensional). Moreover, a characterization of the tensor product of highest weight modules with intermediate series modules is obtained.
In Cartan’s PhD thesis, there is a formula defining a certain rank 8 vector distribution in dimension 15, whose algebra of authomorphism is the split real form of the simple exceptional complex Lie algebra $\mathfrak {f}_4$. Cartan’s formula is written in the standard Cartesian coordinates in $\mathbb {R}^{15}$. In the present paper, we explain how to find analogous formulae for the flat models of any bracket generating distribution $\mathcal D$ whose symbol algebra $\mathfrak {n}({\mathcal D})$ is constant and 2-step graded, $\mathfrak {n}({\mathcal D})=\mathfrak {n}_{-2}\oplus \mathfrak {n}_{-1}$.
The formula is given in terms of a solution to a certain system of linear algebraic equations determined by two representations $(\rho ,\mathfrak {n}_{-1})$ and $(\tau ,\mathfrak {n}_{-2})$ of a Lie algebra $\mathfrak {n}_{00}$ contained in the $0$th order Tanaka prolongation $\mathfrak {n}_0$ of $\mathfrak {n}({\mathcal D})$.
Numerous examples are provided, with particular emphasis put on the distributions with symmetries being real forms of simple exceptional Lie algebras $\mathfrak {f}_4$ and $\mathfrak {e}_6$.
Let G be a simple algebraic group with ${\mathfrak g}={\textrm{Lie }} G$ and ${\mathcal O}_{\textsf{min}}\subset{\mathfrak g}$ the minimal nilpotent orbit. For a ${\mathbb Z}_2$-grading ${\mathfrak g}={\mathfrak g}_0\oplus{\mathfrak g}_1$, let $G_0$ be a connected subgroup of G with ${\textrm{Lie }} G_0={\mathfrak g}_0$. We study the $G_0$-equivariant projections $\varphi\,:\,\overline{{\mathcal O}_{\textsf{min}}}\to {\mathfrak g}_0$ and $\psi:\overline{{\mathcal O}_{\textsf{min}}}\to{\mathfrak g}_1$. It is shown that the properties of $\overline{\varphi({\mathcal O}_{\textsf{min}})}$ and $\overline{\psi({\mathcal O}_{\textsf{min}})}$ essentially depend on whether the intersection ${\mathcal O}_{\textsf{min}}\cap{\mathfrak g}_1$ is empty or not. If ${\mathcal O}_{\textsf{min}}\cap{\mathfrak g}_1\ne\varnothing$, then both $\overline{\varphi({\mathcal O}_{\textsf{min}})}$ and $\overline{\psi({\mathcal O}_{\textsf{min}})}$ contain a 1-parameter family of closed $G_0$-orbits, while if ${\mathcal O}_{\textsf{min}}\cap{\mathfrak g}_1=\varnothing$, then both are $G_0$-prehomogeneous. We prove that $\overline{G{\cdot}\varphi({\mathcal O}_{\textsf{min}})}=\overline{G{\cdot}\psi({\mathcal O}_{\textsf{min}})}$. Moreover, if ${\mathcal O}_{\textsf{min}}\cap{\mathfrak g}_1\ne\varnothing$, then this common variety is the affine cone over the secant variety of ${\mathbb P}({\mathcal O}_{\textsf{min}})\subset{\mathbb P}({\mathfrak g})$. As a digression, we obtain some invariant-theoretic results on the affine cone over the secant variety of the minimal orbit in an arbitrary simple G-module. In conclusion, we discuss more general projections that are related to either arbitrary reductive subalgebras of ${\mathfrak g}$ in place of ${\mathfrak g}_0$ or spherical nilpotent G-orbits in place of ${\mathcal O}_{\textsf{min}}$.
Let G be a Baumslag–Solitar group. We calculate the intersection $\gamma_{\omega}(G)$ of all terms of the lower central series of G. Using this, we show that $[\gamma_{\omega}(G),G]=\gamma_{\omega}(G)$, thus answering a question of Bardakov and Neschadim [1]. For any $c \in \mathbb{N}$, with $c \geq 2$, we show, by using Lie algebra methods, that the quotient group $\gamma_{c}(G)/\gamma_{c+1}(G)$ of the lower central series of G is finite.
Let K be any field of characteristic two and let $U_1$ and $W_1$ be the Lie algebras of the derivations of the algebra of Laurent polynomials $K[t,t^{-1}]$ and of the polynomial ring K[t], respectively. The algebras $U_1$ and $W_1$ are equipped with natural $\mathbb{Z}$-gradings. In this paper, we provide bases for the graded identities of $U_1$ and $W_1$, and we prove that they do not admit any finite basis.
A thin Lie algebra is a Lie algebra $L$, graded over the positive integers, with its first homogeneous component $L_1$ of dimension two and generating $L$, and such that each non-zero ideal of $L$ lies between consecutive terms of its lower central series. All homogeneous components of a thin Lie algebra have dimension one or two, and the two-dimensional components are called diamonds. Suppose the second diamond of $L$ (that is, the next diamond past $L_1$) occurs in degree $k$. We prove that if $k>5$, then $[Lyy]=0$ for some non-zero element $y$ of $L_1$. In characteristic different from two this means $y$ is a sandwich element of $L$. We discuss the relevance of this fact in connection with an important theorem of Premet on sandwich elements in modular Lie algebras.
Let K be a field of characteristic zero. In this paper, we study the polynomial identities of representations of Lie algebras, also called weak identities, or identities of pairs. These identities are determined by pairs of the form (A, L) where A is an associative enveloping algebra for the Lie algebra L. Then a weak identity of (A, L) (or an identity for the representation of L associated to A) is an associative polynomial which vanishes when evaluated on elements of L⊆ A. One of the most influential results in the area of PI algebras was the theory developed by Kemer. A crucial role in it was played by the construction of the Grassmann envelope of an associative algebra and the close relation of the identities of the algebra and its Grassmann envelope. Here we consider varieties of pairs. We prove that under some restrictions one can develop a theory similar to that of Kemer's in the study of identities of representations of Lie algebras. As a consequence, we establish that in the case when K is algebraically closed, if a variety of pairs does not contain pairs corresponding to representations of sl2(K), and if the variety is generated by a pair where the associative algebra is PI then it is soluble. As another consequence of the methods used to obtain the above result, and applying ideas from papers by Giambruno and Zaicev, we were able to construct a pair (A, L) such that its PI exponent (if it exists) cannot be an integer. We recall that the PI exponent exists and is an integer whenever A is an associative (a theorem by Giambruno and Zaicev), or a finite-dimensional Lie algebra (Zaicev). Gordienko also proved that the PI exponent exists and is an integer for finite-dimensional representations of Lie algebras.
We analyse infinitesimal deformations of pairs $(X,{\mathcal{F}})$ with ${\mathcal{F}}$ a coherent sheaf on a smooth projective variety $X$ over an algebraically closed field of characteristic 0. We describe a differential graded Lie algebra controlling the deformation problem, and we prove an analog of a Mukai–Artamkin theorem about the trace map.
We study the classical limit of a family of irreducible representations of the quantum affine algebra associated to $\mathfrak{sl}_{n+1}$. After a suitable twist, the limit is a module for $\mathfrak{sl}_{n+1}[t]$, i.e., for the maximal standard parabolic subalgebra of the affine Lie algebra. Our first result is about the family of prime representations introduced in Hernandez and Leclerc (Duke Math. J.154 (2010), 265–341; Symmetries, Integrable Systems and Representations, Springer Proceedings in Mathematics & Statitics, Volume 40, pp. 175–193 (2013)), in the context of a monoidal categorification of cluster algebras. We show that these representations specialize (after twisting) to $\mathfrak{sl}_{n+1}[t]$-stable prime Demazure modules in level-two integrable highest-weight representations of the classical affine Lie algebra. It was proved in Chari et al. (arXiv:1408.4090) that a stable Demazure module is isomorphic to the fusion product of stable prime Demazure modules. Our next result proves that such a fusion product is the limit of the tensor product of the corresponding irreducible prime representations of quantum affine $\mathfrak{sl}_{n+1}$.
We consider the problem of deforming simultaneously a pair of given structures. We show that such deformations are governed by an $L_{\infty }$-algebra, which we construct explicitly. Our machinery is based on Voronov’s derived bracket construction. In this paper we consider only geometric applications, including deformations of coisotropic submanifolds in Poisson manifolds, of twisted Poisson structures, and of complex structures within generalized complex geometry. These applications cannot be, to our knowledge, obtained by other methods such as operad theory.
Let L=H(2r;n) be a graded Lie algebra of Hamiltonian type in the Cartan type series over an algebraically closed field of characteristic p>2. In the generalized restricted Lie algebra setup, any irreducible representation of L corresponds uniquely to a (generalized) p-character χ. When the height of χ is no more than min {pni−pni−1∣i=1,2,…,2r}−2, the corresponding irreducible representations are proved to be induced from irreducible representations of the distinguished maximal subalgebra L0 with the aid of an analogy of Skryabin’s category ℭ for the generalized Jacobson–Witt algebras and modulo finitely many exceptional cases. Since the exceptional simple modules have been classified, we can then give a full description of the irreducible representations with p-characters of height below this number.
In this paper, it is proved that all irreducible Harish-Chandra modules over the ℚ Heisenberg–Virasoro algebra are of the intermediate series (all weight spaces are at most one-dimensional).
In this paper we propose an approach to classifying a subclass of filiform Leibniz algebras. This subclass arises from the naturally graded filiform Lie algebras. We reconcile and simplify the structure constants of such a class. In the arbitrary fixed dimension case an effective algorithm to control the behavior of the structure constants under adapted transformations of basis is presented. In one particular case, the precise formulas for less than 10 dimensions are given. We provide a computer program in Maple that can be used in computations as well.
A thin Lie algebra is a Lie algebra graded over the positive integers satisfying a certain narrowness condition. We describe several cyclic grading of the modular Hamiltonian Lie algebras H(2: n; ω2) (of dimension one less than a power of p) from which we construct infinite-dimensional thin Lie algebras. In the process we provide an explicit identification of H(2: n; ω2) with a Block algebra. We also compute its second cohomology group and its derivation algebra (in arbitrary prime characteristic).
We investigate a class of infinite-dimensional, modular, graded Lie algebra in which the homogeneous components have dimension at most two. A subclass of these algebras can be obtained via a twisted loop algebra construction from certain finite-dimensional, simple Lie algebras of Albert-Frank type.
Another subclass of these algebras is strictly related to certain graded Lie algebras of maximal class, and exhibits a wide range of behaviours.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.