To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let G be a locally compact, Hausdorff, second countable groupoid and A be a separable, $C_0(G^{(0)})$-nuclear, G-$C^*$-algebra. We prove the existence of quasi-invariant, completely positive and contractive lifts for equivariant, completely positive and contractive maps from A into a separable, quotient $C^*$-algebra. Along the way, we construct the Busby invariant for G-actions.
A Schur multiplier is a linear map on matrices which acts on its entries by multiplication with some function, called the symbol. We consider idempotent Schur multipliers, whose symbols are indicator functions of smooth Euclidean domains. Given $1<p\neq 2<\infty $, we provide a local characterization (under some mild transversality condition) for the boundedness on Schatten p-classes of Schur idempotents in terms of a lax notion of boundary flatness. We prove in particular that all Schur idempotents are modeled on a single fundamental example: the triangular projection. As an application, we fully characterize the local $L_p$-boundedness of smooth Fourier idempotents on connected Lie groups. They are all modeled on one of three fundamental examples: the classical Hilbert transform and two new examples of Hilbert transforms that we call affine and projective. Our results in this paper are vast noncommutative generalizations of Fefferman’s celebrated ball multiplier theorem. They confirm the intuition that Schur multipliers share profound similarities with Euclidean Fourier multipliers – even in the lack of a Fourier transform connection – and complete, for Lie groups, a longstanding search of Fourier $L_p$-idempotents.
For a state $\omega$ on a C$^{*}$-algebra $A$, we characterize all states $\rho$ in the weak* closure of the set of all states of the form $\omega \circ \varphi$, where $\varphi$ is a map on $A$ of the form $\varphi (x)=\sum \nolimits _{i=1}^{n}a_i^{*}xa_i,$$\sum \nolimits _{i=1}^{n}a_i^{*}a_i=1$ ($a_i\in A$, $n\in \mathbb {N}$). These are precisely the states $\rho$ that satisfy $\|\rho |J\|\leq \|\omega |J\|$ for each ideal $J$ of $A$. The corresponding question for normal states on a von Neumann algebra $\mathcal {R}$ (with the weak* closure replaced by the norm closure) is also considered. All normal states of the form $\omega \circ \psi$, where $\psi$ is a quantum channel on $\mathcal {R}$ (that is, a map of the form $\psi (x)=\sum \nolimits _ja_j^{*}xa_j$, where $a_j\in \mathcal {R}$ are such that the sum $\sum \nolimits _ja_j^{*}a_j$ converge to $1$ in the weak operator topology) are characterized. A variant of this topic for hermitian functionals instead of states is investigated. Maximally mixed states are shown to vanish on the strong radical of a C$^{*}$-algebra and for properly infinite von Neumann algebras the converse also holds.
We demonstrate how exact structures can be placed on the additive category of right operator modules over an operator algebra in order to discuss global dimension for operator algebras. The properties of the Haagerup tensor product play a decisive role in this.
We show that if G is an amenable group and H is a hyperbolic group, then the free product $G\ast H$ is weakly amenable. A key ingredient in the proof is the fact that $G\ast H$ is orbit equivalent to $\mathbb{Z}\ast H$.
We establish several new characterizations of amenable $W^*$- and $C^*$-dynamical systems over arbitrary locally compact groups. In the $W^*$-setting we show that amenability is equivalent to (1) a Reiter property and (2) the existence of a certain net of completely positive Herz–Schur multipliers of $(M,G,\alpha )$ converging point weak* to the identity of $G\bar {\ltimes }M$. In the $C^*$-setting, we prove that amenability of $(A,G,\alpha )$ is equivalent to an analogous Herz–Schur multiplier approximation of the identity of the reduced crossed product $G\ltimes A$, as well as a particular case of the positive weak approximation property of Bédos and Conti [On discrete twisted $C^*$-dynamical systems, Hilbert $C^*$-modules and regularity. Münster J. Math.5 (2012), 183–208] (generalized to the locally compact setting). When $Z(A^{**})=Z(A)^{**}$, it follows that amenability is equivalent to the 1-positive approximation property of Exel and Ng [Approximation property of $C^*$-algebraic bundles. Math. Proc. Cambridge Philos. Soc.132(3) (2002), 509–522]. In particular, when $A=C_0(X)$ is commutative, amenability of $(C_0(X),G,\alpha )$ coincides with topological amenability of the G-space $(G,X)$.
Let $ H $ be a compact subgroup of a locally compact group $ G $. We first investigate some (operator) (co)homological properties of the Fourier algebra $A(G/H)$ of the homogeneous space $G/H$ such as (operator) approximate biprojectivity and pseudo-contractibility. In particular, we show that $ A(G/H) $ is operator approximately biprojective if and only if $ G/H $ is discrete. We also show that $A(G/H)^{**}$ is boundedly approximately amenable if and only if G is compact and H is open. Finally, we consider the question of existence of weakly compact multipliers on $A(G/H)$.
In this paper, we characterize the multiple operator integrals mappings that are bounded on the Haagerup tensor product of spaces of compact operators. We show that such maps are automatically completely bounded and prove that this is equivalent to a certain factorization property of the symbol associated with the operator integral mapping. This generalizes a result by Juschenko-Todorov-Turowska on the boundedness of measurable multilinear Schur multipliers.
Let $n$ be a positive integer. A $C^{\ast }$-algebra is said to be $n$-subhomogeneous if all its irreducible representations have dimension at most $n$. We give various approximation properties characterising $n$-subhomogeneous $C^{\ast }$-algebras.
We give a general method of extending unital completely positive maps to amalgamated free products of C*-algebras. As an application, we give a dilation theoretic proof of Boca's Theorem.
We obtain intertwining dilation theorems for non-commutative regular domains 𝒟f and non-commutative varieties 𝒱J in B(𝓗)n, which generalize Sarason and Szőkefalvi-Nagy and Foiaş's commutant lifting theorem for commuting contractions. We present several applications including a new proof for the commutant lifting theorem for pure elements in the domain 𝒟f (respectively, variety 𝒱J ) as well as a Schur-type representation for the unit ball of the Hardy algebra associated with the variety 𝒱J. We provide Andô-type dilations and inequalities for bi-domains 𝒟f ×c 𝒟g consisting of all pairs (X,Y ) of tuples X := (X1,…, Xn1) ∊ 𝒟f and Y := (Y1,…, Yn2) ∊ 𝒟g that commute, i.e. each entry of X commutes with each entry of Y . The results are new, even when n1 = n2 = 1. In this particular case, we obtain extensions of Andô's results and Agler and McCarthy's inequality for commuting contractions to larger classes of commuting operators. All the results are extended to bi-varieties 𝒱J1×c 𝒱J2, where 𝒱J1 and 𝒱J2 are non-commutative varieties generated by weak-operator-topology-closed two-sided ideals in non-commutative Hardy algebras. The commutative case and the matrix case when n1 = n2 = 1 are also discussed.
We prove a necessary and sufficient condition for embeddability of an operator system into ${\mathcal{O}}_{2}$. Using Kirchberg’s theorems on a tensor product of ${\mathcal{O}}_{2}$ and ${\mathcal{O}}_{\infty }$, we establish results on their operator system counterparts ${\mathcal{S}}_{2}$ and ${\mathcal{S}}_{\infty }$. Applications of the results, including some examples describing $C^{\ast }$-envelopes of operator systems, are also discussed.
We define the Schur multipliers of a separable von Neumann algebra with Cartan maximal abelian self-adjoint algebra , generalizing the classical Schur multipliers of (ℓ2). We characterize these as the normal -bimodule maps on . If contains a direct summand isomorphic to the hyperfinite II1 factor, then we show that the Schur multipliers arising from the extended Haagerup tensor product ⊗eh are strictly contained in the algebra of all Schur multipliers.
We prove that an operator system is (min, ess)-nuclear if its $C^{\ast }$-envelope is nuclear. This allows us to deduce that an operator system associated to a generating set of a countable discrete group by Farenick et al. [‘Operator systems from discrete groups’, Comm. Math. Phys.329(1) (2014), 207–238] is (min, ess)-nuclear if and only if the group is amenable. We also make a detailed comparison between ess and other operator system tensor products and show that an operator system associated to a minimal generating set of a finitely generated discrete group (respectively, a finite graph) is (min, max)-nuclear if and only if the group is of order less than or equal to three (respectively, every component of the graph is complete).
We give a proof of the Khintchine inequalities in non-commutative $L_{p}$-spaces for all $0<p<1$. These new inequalities are valid for the Rademacher functions or Gaussian random variables, but also for more general sequences, for example, for the analogues of such random variables in free probability. We also prove a factorization for operators from a Hilbert space to a non-commutative $L_{p}$-space, which is new for $0<p<1$. We end by showing that Mazur maps are Hölder on semifinite von Neumann algebras.
For any pair M, N of von Neumann algebras such that the algebraic tensor product M ⊗ N admits more than one C*-norm, the cardinal of the set of C*-norms is at least 2ℵ0. Moreover, there is a family with cardinality 2ℵ0 of injective tensor product functors for C*-algebras in Kirchberg's sense. Let ${\mathbb B}$=∏nMn. We also show that, for any non-nuclear von Neumann algebra M⊂ ${\mathbb B}$(ℓ2), the set of C*-norms on ${\mathbb B}$ ⊗ M has cardinality equal to 22ℵ0.
We define the quotient and complete NUOS-quotient map (NUOS stands for nonunital operator system) in the category of nonunital operator systems. We prove that the greatest reduced tensor product max0 is projective in some sense. Moreover, we define a pseudo unit in a nonunital operator system and give some necessary and sufficient conditions under which a nonunital operator system has an operator system structure.
We study the metric entropy of the metric space ${\mathcal{B}}_{n}$ of all $n$-dimensional Banach spaces (the so-called Banach–Mazur compactum) equipped with the Banach–Mazur (multiplicative) “distance” $d$. We are interested either in estimates independent of the dimension or in asymptotic estimates when the dimension tends to $\infty$. For instance, we prove that, if $N({\mathcal{B}}_{n},d,1+{\it\varepsilon})$ is the smallest number of “balls” of “radius” $1+{\it\varepsilon}$ that cover ${\mathcal{B}}_{n}$, then for any ${\it\varepsilon}>0$ we have
We also prove an analogous result for the metric entropy of the set of $n$-dimensional operator spaces equipped with the distance $d_{N}$ naturally associated with $N\times N$ matrices with operator entries. In that case $N$ is arbitrary but our estimates are valid independently of $N$. In the Banach space case (i.e. $N=1$) the above upper bound is part of the folklore, and the lower bound is at least partially known (but apparently has not appeared in print). While we follow the same approach in both cases, the matricial case requires more delicate ingredients, namely estimates (from our previous work) on certain $n$-tuples of $N\times N$ unitary matrices known as “quantum expanders”.