To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We define several notions of a limit point on sequences with domain a barrier in $[\omega ]^{<\omega }$ focusing on the two dimensional case $[\omega ]^2$. By exploring some natural candidates, we show that countable compactness has a number of generalizations in terms of limits of high dimensional sequences and define a particular notion of $\alpha $-countable compactness for $\alpha \leq \omega _1$. We then focus on dimension 2 and compare 2-countable compactness with notions previously studied in the literature. We present a number of counterexamples showing that these classes are different. In particular assuming the existence of a Ramsey ultrafilter, a subspace of $\beta \omega $ which is doubly countably compact whose square is not countably compact, answering a question of T. Banakh, S. Dimitrova, and O. Gutik [3]. The analysis of this construction leads to some possibly new types of ultrafilters related to discrete, P-points and Ramsey ultrafilters.
We introduce a generalization of sequential compactness using barriers on $\omega $ extending naturally the notion introduced in [W. Kubiś and P. Szeptycki, On a topological Ramsey theorem, Canad. Math. Bull., 66 (2023), 156–165]. We improve results from [C. Corral and O. Guzmán and C. López-Callejas, High dimensional sequential compactness, Fund. Math.] by building spaces that are ${\mathcal {B}}$-sequentially compact but not ${\mathcal {C}}$-sequentially compact when the barriers ${\mathcal {B}}$ and ${\mathcal {C}}$ satisfy certain rank assumption which turns out to be equivalent to a Katětov-order assumption. Such examples are constructed under the assumption ${\mathfrak {b}} ={\mathfrak {c}}$. We also exhibit some classes of spaces that are ${\mathcal {B}}$-sequentially compact for every barrier ${\mathcal {B}}$, including some classical classes of compact spaces from functional analysis, and as a byproduct, we obtain some results on angelic spaces. Finally, we introduce and compute some cardinal invariants naturally associated to barriers.
Ultrafilters play a significant role in model theory to characterize logics having various compactness and interpolation properties. They also provide a general method to construct extensions of first-order logic having these properties. A main result of this paper is that every class $\Omega $ of uniform ultrafilters generates a $\Delta $-closed logic ${\mathcal {L}}_\Omega $. ${\mathcal {L}}_\Omega $ is $\omega $-relatively compact iff some $D\in \Omega $ fails to be $\omega _1$-complete iff ${\mathcal {L}}_\Omega $ does not contain the quantifier “there are uncountably many.” If $\Omega $ is a set, or if it contains a countably incomplete ultrafilter, then ${\mathcal {L}}_\Omega $ is not generated by Mostowski cardinality quantifiers. Assuming $\neg 0^\sharp $ or $\neg L^{\mu }$, if $D\in \Omega $ is a uniform ultrafilter over a regular cardinal $\nu $, then every family $\Psi $ of formulas in ${\mathcal {L}}_\Omega $ with $|\Phi |\leq \nu $ satisfies the compactness theorem. In particular, if $\Omega $ is a proper class of uniform ultrafilters over regular cardinals, ${\mathcal {L}}_\Omega $ is compact.
We introduce self-divisible ultrafilters, which we prove to be precisely those $w$ such that the weak congruence relation $\equiv _w$ introduced by Šobot is an equivalence relation on $\beta {\mathbb Z}$. We provide several examples and additional characterisations; notably we show that $w$ is self-divisible if and only if $\equiv _w$ coincides with the strong congruence relation $\mathrel {\equiv ^{\mathrm {s}}_{w}}$, if and only if the quotient $(\beta {\mathbb Z},\oplus )/\mathord {\mathrel {\equiv ^{\mathrm {s}}_{w}}}$ is a profinite group. We also construct an ultrafilter $w$ such that $\equiv _w$ fails to be symmetric, and describe the interaction between the aforementioned quotient and the profinite completion $\hat {{\mathbb Z}}$ of the integers.
We construct a nonseparable Banach space $\mathcal {X}$ (actually, of density continuum) such that any uncountable subset $\mathcal {Y}$ of the unit sphere of $\mathcal {X}$ contains uncountably many points distant by less than $1$ (in fact, by less then $1-\varepsilon $ for some $\varepsilon>0$). This solves in the negative the central problem of the search for a nonseparable version of Kottman’s theorem which so far has produced many deep positive results for special classes of Banach spaces and has related the global properties of the spaces to the distances between points of uncountable subsets of the unit sphere. The property of our space is strong enough to imply that it contains neither an uncountable Auerbach system nor an uncountable equilateral set. The space is a strictly convex renorming of the Johnson–Lindenstrauss space induced by an $\mathbb {R}$-embeddable almost disjoint family of subsets of $\mathbb {N}$. We also show that this special feature of the almost disjoint family is essential to obtain the above properties.
We examine a semigroup analogue of the Kumjian–Renault representation of C*-algebras with Cartan subalgebras on twisted groupoids. Specifically, we represent semigroups with distinguished normal subsemigroups as ‘slice-sections’ of groupoid bundles.
We continue the research of the relation $\hspace {1mm}\widetilde {\mid }\hspace {1mm}$ on the set $\beta \mathbb {N}$ of ultrafilters on $\mathbb {N}$, defined as an extension of the divisibility relation. It is a quasiorder, so we see it as an order on the set of $=_{\sim }$-equivalence classes, where $\mathcal {F}=_{\sim }\mathcal {G}$ means that $\mathcal {F}$ and $\mathcal {G}$ are mutually $\hspace {1mm}\widetilde {\mid }$-divisible. Here we introduce a new tool: a relation of congruence modulo an ultrafilter. We first recall the congruence of ultrafilters modulo an integer and show that $=_{\sim }$-equivalent ultrafilters do not necessarily have the same residue modulo $m\in \mathbb {N}$. Then we generalize this relation to congruence modulo an ultrafilter in a natural way. After that, using iterated nonstandard extensions, we introduce a stronger relation, which has nicer properties with respect to addition and multiplication of ultrafilters. Finally, we introduce a strengthening of $\hspace {1mm}\widetilde {\mid }\hspace {1mm}$ and show that it also behaves well with respect to the congruence relation.
We establish that the existence of a winning strategy in certain topological games, closely related to a strong game of Choquet, played in a topological space $X$ and its hyperspace $K(X)$ of all nonempty compact subsets of $X$ equipped with the Vietoris topology, is equivalent for one of the players. For a separable metrizable space $X$, we identify a game-theoretic condition equivalent to $K(X)$ being hereditarily Baire. It implies quite easily a recent result of Gartside, Medini and Zdomskyy that characterizes hereditary Baire property of hyperspaces $K(X)$ over separable metrizable spaces $X$ via the Menger property of the remainder of a compactification of $X$. Subsequently, we use topological games to study hereditary Baire property in spaces of probability measures and in hyperspaces over filters on natural numbers. To this end, we introduce a notion of strong $P$-filter ${\mathcal{F}}$ and prove that it is equivalent to $K({\mathcal{F}})$ being hereditarily Baire. We also show that if $X$ is separable metrizable and $K(X)$ is hereditarily Baire, then the space $P_{r}(X)$ of Borel probability Radon measures on $X$ is hereditarily Baire too. It follows that there exists (in ZFC) a separable metrizable space $X$, which is not completely metrizable with $P_{r}(X)$ hereditarily Baire. As far as we know, this is the first example of this kind.
We show in ZFC that the existence of completely separable maximal almost disjoint families of subsets of $\omega $ implies that the modal logic $\mathbf {S4.1.2}$ is complete with respect to the Čech–Stone compactification of the natural numbers, the space $\beta \omega $. In the same fashion we prove that the modal logic $\mathbf {S4}$ is complete with respect to the space $\omega ^*=\beta \omega \setminus \omega $. This improves the results of G. Bezhanishvili and J. Harding in [4], where the authors prove these theorems under stronger assumptions ($\mathfrak {a=c}$). Our proof is also somewhat simpler.
It is proved that the Continuum Hypothesis implies that any sequence of rapid P-points of length ${<}\mathfrak{c}^{+}$ that is increasing with respect to the Rudin–Keisler ordering is bounded above by a rapid P-point. This is an improvement of a result from B. Kuzeljevic and D. Raghavan. It is also proved that Jensen’s diamond principle implies the existence of an unbounded strictly increasing sequence of P-points of length $\unicode[STIX]{x1D714}_{1}$ in the Rudin–Keisler ordering. This shows that restricting to the class of rapid P-points is essential for the first result.
We explore the cardinality of generalised inverse limits. Among other things, we show that, for any $n\in \{ℵ_{0},c,1,2,3,\dots \}$, there is an upper semicontinuous function with the inverse limit having exactly $n$ points. We also prove that if $f$ is an upper semicontinuous function whose graph is a continuum, then the cardinality of the corresponding inverse limit is either 1, $ℵ_{0}$ or $c$. This generalises the recent result of I. Banič and J. Kennedy, which claims that the same is true in the case where the graph is an arc.
To each filter ℱ on ω, a certain linear subalgebra A(ℱ) of Rω, the countable product of lines, is assigned. This algebra is shown to have many interesting topological properties, depending on the properties of the filter ℱ. For example, if ℱ is a free ultrafilter, then A(ℱ) is a Baire subalgebra of ℱω for which the game OF introduced by Tkachenko is undetermined (this resolves a problem of Hernández, Robbie and Tkachenko); and if ℱ1 and ℱ2 are two free filters on ω that are not near coherent (such filters exist under Martin's Axiom), then A (ℱ1) and A(ℱ2) are two o-bounded and OF-undetermined subalgebras of ℱω whose product A(ℱ1) × A(ℱ2) is OF-determined and not o-bounded (this resolves a problem of Tkachenko). It is also shown that the statement that the product of two o-bounded subrings of ℱω is o-bounded is equivalent to the set-theoretic principle NCF (Near Coherence of Filters); this suggests that Tkachenko's question on the productivity of the class of o-bounded topological groups may be undecidable in ZFC.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.