To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Functional design is regarded as a design activity primarily aimed at clarifying customer needs, and developing the functional architecture and solution concepts for a system under development. Existing functional design approaches are mainly focused on how to assist designers in searching for solution principles for desired products, which, however, do not adequately take into account the interactions between a smart system under development and its environment, and cannot explicitly represent the complex functional logic of the system, resulting in that they cannot effectively assist designers in the functional design of smart systems. Therefore, this paper proposes a scenario-integrated approach for functional design of smart systems to address the above issues. Based on the concept of scenario in software engineering, the proposed approach explicitly elaborates how to employ scenarios to express subjective customer needs and how to generate the functional architectures and the corresponding solution concepts through a structured process. The functional design of the automated doors-unlocking system of a smart vehicle is employed to illustrate the proposed approach, which also demonstrates that the proposed approach is suitable for functional design of smart systems.
We investigate the injective types and the algebraically injective types in univalent mathematics, both in the absence and in the presence of propositional resizing. Injectivity is defined by the surjectivity of the restriction map along any embedding, and algebraic injectivity is defined by a given section of the restriction map along any embedding. Under propositional resizing axioms, the main results are easy to state: (1) Injectivity is equivalent to the propositional truncation of algebraic injectivity. (2) The algebraically injective types are precisely the retracts of exponential powers of universes. (2a) The algebraically injective sets are precisely the retracts of powersets. (2b) The algebraically injective (n+1)-types are precisely the retracts of exponential powers of universes of n-types. (3) The algebraically injective types are also precisely the retracts of algebras of the partial-map classifier. From (2) it follows that any universe is embedded as a retract of any larger universe. In the absence of propositional resizing, we have similar results that have subtler statements which need to keep track of universe levels rather explicitly, and are applied to get the results that require resizing.
This article derives a closed-form pricing formula for the European exchange option in a stochastic volatility framework. Firstly, with the Feynman–Kac theorem's application, we obtain a relation between the price of the European exchange option and a European vanilla call option with unit strike price under a doubly stochastic volatility model. Then, we obtain the closed-form solution for the vanilla option using the characteristic function. A key distinguishing feature of the proposed simplified approach is that it does not require a change of numeraire in contrast with the usual methods to price exchange options. Finally, through numerical experiments, the accuracy of the newly derived formula is verified by comparing with the results obtained using Monte Carlo simulations.
This paper establishes a new version of integration by parts formula of Markov chains for sensitivity computation, under much lower restrictions than the existing researches. Our approach is more fundamental and applicable without using Girsanov theorem or Malliavin calculus as did by past papers. Numerically, we apply this formula to compute sensitivity regarding the transition rate matrix and compare with a recent research by an IPA (infinitesimal perturbation analysis) method and other approaches.
In this paper, we discuss the problem of pricing discretely sampled variance swaps under a hybrid stochastic model. Our modeling framework is a combination with a double Heston stochastic volatility model and a Cox–Ingersoll–Ross stochastic interest rate process. Due to the application of the T-forward measure with the stochastic interest process, we can only obtain an efficient semi-closed form of pricing formula for variance swaps instead of a closed-form solution based on the derivation of characteristic functions. The practicality of this hybrid model is demonstrated by numerical simulations.
This paper deals with the multivariate tail conditional expectation (MTCE) for generalized skew-elliptical distributions. We present tail conditional expectation for univariate generalized skew-elliptical distributions and MTCE for generalized skew-elliptical distributions. There are many special cases for generalized skew-elliptical distributions, such as generalized skew-normal, generalized skew Student-t, generalized skew-logistic and generalized skew-Laplace distributions.
Many approaches have been proposed in the literature to enhance the robustness of Convolutional Neural Network (CNN)-based architectures against image distortions. Attempts to combat various types of distortions can be made by combining multiple expert networks, each trained by a certain type of distorted images, which however lead to a large model with high complexity. In this paper, we propose a CNN-based architecture with a pre-processing unit in which only undistorted data are used for training. The pre-processing unit employs discrete cosine transform (DCT) and discrete wavelets transform (DWT) to remove high-frequency components while capturing prominent high-frequency features in the undistorted data by means of random selection. We further utilize the singular value decomposition (SVD) to extract features before feeding the preprocessed data into the CNN for training. During testing, distorted images directly enter the CNN for classification without having to go through the hybrid module. Five different types of distortions are produced in the SVHN dataset and the CIFAR-10/100 datasets. Experimental results show that the proposed DCT-DWT-SVD module built upon the CNN architecture provides a classifier robust to input image distortions, outperforming the state-of-the-art approaches in terms of accuracy under different types of distortions.
In this paper, a multiantenna wireless transmitter communicates with an information receiver while radiating RF energy to surrounding energy harvesters. The channel between the transceivers is known to the transmitter, but the channels between the transmitter and the energy harvesters are unknown to the transmitter. By designing its transmit covariance matrix, the transmitter fully charges the energy buffers of all energy harvesters in the shortest amount of time while maintaining the target information rate toward the receiver. At the beginning of each time slot, the transmitter determines the particular beam pattern to transmit with. Throughout the whole charging process, the transmitter does not estimate the energy harvesting channel vectors. Due to the high complexity of the system, we propose a novel deep Q-network algorithm to determine the optimal transmission strategy for complex systems. Simulation results show that deep Q-network is superior to the existing algorithms in terms of the time consumption to fulfill the wireless charging process.
For the past few years, deep learning (DL) robustness (i.e. the ability to maintain the same decision when inputs are subject to perturbations) has become a question of paramount importance, in particular in settings where misclassification can have dramatic consequences. To address this question, authors have proposed different approaches, such as adding regularizers or training using noisy examples. In this paper we introduce a regularizer based on the Laplacian of similarity graphs obtained from the representation of training data at each layer of the DL architecture. This regularizer penalizes large changes (across consecutive layers in the architecture) in the distance between examples of different classes, and as such enforces smooth variations of the class boundaries. We provide theoretical justification for this regularizer and demonstrate its effectiveness to improve robustness on classical supervised learning vision datasets for various types of perturbations. We also show it can be combined with existing methods to increase overall robustness.
Wireless energy harvesting is an effective way to power condition monitoring sensors which are the basis of smart grid. In this paper, a new free-standing I-shaped core is designed to scavenge electromagnetic energy from large alternating current. An I-shaped core can guide more magnetic flux by adding a pair of magnetic flux collector plates at both ends of the rod core. It weakens the core demagnetization field and enables more energy to be collected. Since a magnetic field line can be bent with high-permeability soft magnetic materials, a highly efficient grid-shaped coil is proposed. Compared with the I-shaped coil, its weight is lighter and power density is higher. A Mn-Zn ferrite with high relative permeability and ultralow conductivity can effectively reduce eddy current loss, which proves to be the most suitable material. The measured open circuit voltage agrees well with the theoretical value. The experimental results show that the output power can reach 4.5 mW when the I-shaped coil is placed in a magnetic flux density of 6.5 μTrms. The power density is 7.28 μW/cm3. Therefore, the proposed design can be very effective for supplying condition monitoring sensors.
AOM Video 1 (AV1) and Versatile Video Coding (VVC) are the outcome of two recent independent video coding technology developments. Although VVC is the successor of High Efficiency Video Coding (HEVC) in the lineage of international video coding standards jointly developed by ITU-T and ISO/IEC within an open and public standardization process, AV1 is a video coding scheme that was developed by the industry consortium Alliance for Open Media (AOM) and that has its technological roots in Google's proprietary VP9 codec. This paper presents a compression efficiency evaluation for the AV1, VVC, and HEVC video coding schemes in a typical video compression application requiring random access. The latter is an important property, without which essential functionalities in digital video broadcasting or streaming could not be provided. For the evaluation, we employed a controlled experimental environment that basically follows the guidelines specified in the Common Test Conditions of the Joint Video Experts Team. As representatives of the corresponding video coding schemes, we selected their freely available reference software implementations. Depending on the application-specific frequency of random access points, the experimental results show averaged bit-rate savings of about 10–15% for AV1 and 36–37% for the VVC reference encoder implementation (VTM), both relative to the HEVC reference encoder implementation (HM) and by using a test set of video sequences with different characteristics regarding content and resolution. A direct comparison between VTM and AV1 reveals averaged bit-rate savings of about 25–29% for VTM, while the averaged encoding and decoding run times of VTM relative to those of AV1 are around 300% and 270%, respectively.
Automatic emotion recognition has become an important trend in the fields of human–computer natural interaction and artificial intelligence. Although gesture is one of the most important components of nonverbal communication, which has a considerable impact on emotion recognition, it is rarely considered in the study of emotion recognition. An important reason is the lack of large open-source emotional databases containing skeletal movement data. In this paper, we extract three-dimensional skeleton information from videos and apply the method to IEMOCAP database to add a new modality. We propose an attention-based convolutional neural network which takes the extracted data as input to predict the speakers’ emotional state. We also propose a graph attention-based fusion method that combines our model with the models using other modalities, to provide complementary information in the emotion classification task and effectively fuse multimodal cues. The combined model utilizes audio signals, text information, and skeletal data. The performance of the model significantly outperforms the bimodal model and other fusion strategies, proving the effectiveness of the method.
Deep neural networks (DNN) have solved many tasks, including image classification, object detection, and semantic segmentation. However, when there are huge parameters and high level of computation associated with a DNN model, it becomes difficult to deploy on mobile devices. To address this difficulty, we propose an efficient compression method that can be split into three parts. First, we propose a cross-layer matrix to extract more features from the teacher's model. Second, we adopt Kullback Leibler (KL) Divergence in an offline environment to make the student model find a wider robust minimum. Finally, we propose the offline ensemble pre-trained teachers to teach a student model. To address dimension mismatch between teacher and student models, we adopt a $1\times 1$ convolution and two-stage knowledge distillation to release this constraint. We conducted experiments with VGG and ResNet models, using the CIFAR-100 dataset. With VGG-11 as the teacher's model and VGG-6 as the student's model, experimental results showed that the Top-1 accuracy increased by 3.57% with a $2.08\times$ compression rate and 3.5x computation rate. With ResNet-32 as the teacher's model and ResNet-8 as the student's model, experimental results showed that Top-1 accuracy increased by 4.38% with a $6.11\times$ compression rate and $5.27\times$ computation rate. In addition, we conducted experiments using the ImageNet$64\times 64$ dataset. With MobileNet-16 as the teacher's model and MobileNet-9 as the student's model, experimental results showed that the Top-1 accuracy increased by 3.98% with a $1.59\times$ compression rate and $2.05\times$ computation rate.
Conventional magnetically coupled resonant wireless power transfer systems are faced with resonant frequency splitting phenomena and impedance mismatch when a receiving coil is placed at misaligned position. These problems can be avoided by using uniform magnetic field distribution at receiving plane. In this paper, a novel 3D transmitting coil structure with improved uniform magnetic field distribution is proposed based on a developed optimization method. The goal is to maximize the average magnetic field strength and uniform magnetic field section of the receiving plane. Hence, figures of merit (FoM1 and FoM2) are introduced and defined as product of average magnetic field strength and length or surface along which uniform magnetic field is generated, respectively. The validity of the optimization method is verified through laboratory measurements performed on the fabricated coils driven by signal generator at operating frequency of 150 kHz. Depending on the allowed ripple value and predefined coil proportions, the proposed transmitting coil structure gives the uniform magnetic field distribution across 50% to 90% of the receiving plane.
Immersive audio has received significant attention in the past decade. The emergence of a few groundbreaking systems and events (Dolby Atmos, MPEG-H, VR/AR, AI) contributes to reshaping the landscape of this field, accelerating the mass market adoption of immersive audio. This review serves as a quick recap of some immersive audio background, end to end workflow, covering audio capture, compression, and rendering. The technical aspects of object audio and ambisonic will be explored, as well as other related topics such as binauralization, virtual surround, and upmix. Industry trends and applications are also discussed where user experience ultimately decides the future direction of the immersive audio technologies.
Wireless power transfer has been proved promising in various applications. The homogeneous winding method in loosely coupled transformers incurs unnecessary intense magnetic field distribution in the center and causes extra magnetic loss. An inhomogeneous winding method is proposed in this paper, and a relatively homogeneous magnetic field distribution inside the core is achieved. This paper investigated the magnetic loss of homogeneous winding and inhomogeneous winding for wireless power transfer. A theoretical model was built to evaluate magnetic loss under inhomogeneous winding. The coupling coefficient and magnetic loss were investigated individually and comparisons were made between different width ratio combinations. Theoretical analysis was validated in experiments.
In this paper, we propose a novel method for protecting convolutional neural network models with a secret key set so that unauthorized users without the correct key set cannot access trained models. The method enables us to protect not only from copyright infringement but also the functionality of a model from unauthorized access without any noticeable overhead. We introduce three block-wise transformations with a secret key set to generate learnable transformed images: pixel shuffling, negative/positive transformation, and format-preserving Feistel-based encryption. Protected models are trained by using transformed images. The results of experiments with the CIFAR and ImageNet datasets show that the performance of a protected model was close to that of non-protected models when the key set was correct, while the accuracy severely dropped when an incorrect key set was given. The protected model was also demonstrated to be robust against various attacks. Compared with the state-of-the-art model protection with passports, the proposed method does not have any additional layers in the network, and therefore, there is no overhead during training and inference processes.
Biometric recognition technologies have become more important in the modern society due to their convenience with the recent informatization and the dissemination of network services. Among such technologies, face recognition is one of the most convenient and practical because it enables authentication from a distance without requiring any authentication operations manually. As far as we know, face recognition is susceptible to the changes in the appearance of faces due to aging, the surrounding lighting, and posture. There were a number of technical challenges that need to be resolved. Recently, remarkable progress has been made thanks to the advent of deep learning methods. In this position paper, we provide an overview of face recognition technology and introduce its related applications, including face presentation attack detection, gaze estimation, person re-identification and image data mining. We also discuss the research challenges that still need to be addressed and resolved.
An explainable, efficient, and lightweight method for texture generation, called TGHop (an acronym of Texture Generation PixelHop), is proposed in this work. Although synthesis of visually pleasant texture can be achieved by deep neural networks, the associated models are large in size, difficult to explain in theory, and computationally expensive in training. In contrast, TGHop is small in its model size, mathematically transparent, efficient in training and inference, and able to generate high-quality texture. Given an exemplary texture, TGHop first crops many sample patches out of it to form a collection of sample patches called the source. Then, it analyzes pixel statistics of samples from the source and obtains a sequence of fine-to-coarse subspaces for these patches by using the PixelHop++ framework. To generate texture patches with TGHop, we begin with the coarsest subspace, which is called the core, and attempt to generate samples in each subspace by following the distribution of real samples. Finally, texture patches are stitched to form texture images of a large size. It is demonstrated by experimental results that TGHop can generate texture images of superior quality with a small model size and at a fast speed.
Answer selection, ranking high-quality answers first, is a significant problem for the community question answering sites. Existing approaches usually consider it as a text matching task, and then calculate the quality of answers via their semantic relevance to the given question. However, they thoroughly ignore the influence of other multiple factors in the community, such as the user expertise. In this paper, we propose an answer selection model based on the user expertise modeling, which simultaneously considers the social influence and the personal interest that affect the user expertise from different views. Specifically, we propose an inductive strategy to aggregate the social influence of neighbors. Besides, we introduce the explicit topic interest of users and capture the context-based personal interest by weighing the activation of each topic. Moreover, we construct two real-world datasets containing rich user information. Extensive experiments on two datasets demonstrate that our model outperforms several state-of-the-art models.