To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We shall be concerned with the behaviour of the fractional iterates of analytic functions which have a fixpoint ζ with multiplier 11. The general form of such a function is If ζ is finite, if ζ = ∞.
In [4] Halmos considers the following situation. Let be a class of distribution functions over a given (Borel) subset E of the real line, and F a function over . He investigates which functions F admit estimates that are unbiased over and what are all possible such estimates for any given F. In particular he shows that on the basis of a sample (of size n) one can always obtain an estimate of the first moment which is unbiased in and that the central moments Fm of order m ≧ 2 have estimates which are unbiased in if and only if n ≧ m, provided satisfies the following properties: Fm exists and is finite for all distributions in and includes all distributions which assign probability one to a finite number of points of E. Halmos also finds that symmetric estimates which are unbiased on are unique1 and have smaller variances on than unsymmetric unbiased estimates.
Felix Behrend was born at Berlin-Charlottenburg, Germany, on 23 April, 1911, the eldest of four children of Dr. Felix W. Behrend and his wife Maria, nee Zöllner. Felix Behrend senior was a mathematics and physics master at the Herderschule, a noted “Reform-Realgymnasium” in one of the western suburbs of Berlin; he was a widely known educationalist, and later headmaster of an important school elsewhere in Berlin, until demoted and finally dismissed by the Nazis, partly because of some Jewish ancestry, partly because of his liberal political views.
A quasi-permutation group of degree n was defined in [3] to be a finite group with a faithful representation of degree n whose character has only non-negative rational integral values. If G is such a group, then the following simple properties of permutation groups of degree n were proved to hold also for G:
(i) the order of G is a divisor of the order of the symmetric group Sn of degree n; and (ii) if G is a p-group and n < p2, then G has exponent at most p and derived length at most 1 (i.e. G is elementary Abelian).
Let an abstract space of points x and let ℳ be a σ-field of subsets of , that is a class of subsets of such that (i) ∈ ℳ, (ii) if M ∈ ℳ then — M ∈ ℳ and (iii) if {Mj} is any sequence of elements of ℳ then UjMj ∈ ℳ.
In the present paper we are concerned with Schröder's functional equation , where ϕ(x) is the unknown function and is a number between 0 and 1: . We shall prove a theorem which generalizes some earlier results on convex solutions of the Schröder equation [4], [5].
By an ∮-related family ∮ we mean a non-empty family ∮ of elements such that to each element F ∈ ∮ is associated a set R(F) of elements of ∮, called the R-class of F, which contains F. An element G ∈ R(F) is said to be R-related to F. By an R-section S of ∮ we mean a set of elements of ∮ such that for any elements F1, F2 of S either F1 ∈ R(F2) or F2 ∈R(F1). If R(F) = {F} for each F ∈ ∮ then the only R-Sections are the sets {F}. The interesting applications of the lemma proved below are to those cases when there exist R-sections which do not contain a finite number of elements.
In this paper results from Fluctuation Theory are used to analyse the imbedded Markov chains of two single server bulk-queueing systems, (i)with Poisson arrivals and arbitrary service time distribution and (ii) with arbitrary inter-arrival time distribution and negative exponential service time. The discrete time transition probailities and the equilibrium behaviour of the queue lengths of the systems have been obtained along with distributions concerning the busy periods. From the general results several special cases have been derived.
Let Xi, i = 1, 2, 3,··· be a sequence of independent and identically distributed random variables and write Sn = X1+X2+…+Xn. If the mean of Xi is finite and positive, we have Pr(Sn ≦ x) → 0 as n → ∞ for all x1 – ∞ < x < ∞ using the weak law of large numbers. It is our purpose in this paper to study the rate of convergence of Pr(Sn ≦ x) to zero. Necessary and sufficient conditions are established for the convergence of the two series where k is a non-negative integer, and where r > 0. These conditions are applied to some first passage problems for sums of random variables. The former is also used in correcting a queueing Theorem of Finch [4].
In a recent paper [7] the author considered, among other things, the integral transform where is the fundamental solution of the heat equation There we gave a physical interpretation of the transform (1.1). Here we shall choose a slightly different interpretation, more convenient for our present purposes. If then u(O, t) = f(t). That is, the function f(t) defined by equation (1.1) is the temperature at the origin (x = 0) of an infinite bar along the x-axis t seconds after it was at a temperature defined by the equation .
A discrete renewal process is a sequence {X4} of independently and inentically distributed random variables which can take on only those values which are positive integral multiples of a positive real number δ. For notational convenience we take δ = 1 and write where .
The fact that the most general symmetrisable operators in Hilbert Space do not possess a number of the desirable properties of such operators in unitary spaces makes it necessary to look for a more restricted class of operators. There are two reasons for our particular choice. In the first place many of the conditions introduced in the course of Part II concerned reltionships between the domain of the symmetrising operator H and the domain and range of the symmetrisable operator A. These conditions are now all automatically satisfied. The other reason is that the construction used in section 4 to relate symmetrisable operators to certain symmetric operators clearly required that either H or H−1 was bounded. The case of H−1 bounded has already been dealt with in section 9 and shown to be fairly simple. The case in which H is bounded is clearly of considerable complexity, since we have already seen (example in proof of Theorem 10.6.) that the con |H| the bound of H by
In the first paper of this series [4] I gave a brief summary of the properties of symmetrisable operators in Hilbert Space. A detailed discussion of these properties will be given now, but the properties of operators symmetrisable by bounded operators will be dealt with further in Part III.
Let (х) = (x1, x2, … xn) = Σi Σiaij, xixf (aij = aij) be a positive quadratic form with determinant D, and let M be the minimum of for integral x ≠ 0. Then attains the value M for a finite number of integral x = ±mk ( k = 1, …, s) called its minimal vectors.
The main purpose of this paper is to discuss the categories of the minimal topological spaces investigated in [1], [2], [7], and [8]. After these results are given, an application will be made to answer the following question: If is the lattice of topologies on a set X and is a Hausdorff (or regular, or completely regular, or normal, or locally compact) topology does there always exist a minimal Hausdorff (or minimal regular, or minimal completely regular, or minimal normal, or minimal locally compact) topology weaker than ?