To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A viscous fluid is confined between two smooth horizontal walls, in a vertical channel. The upper wall may move with constant speed, but the lower wall is stationary and a portion of it is heated. A plume of heated fluid develops, and may also be swept downstream by the motion of the upper wall. When the heating effect is small and the upper plate does not move, a closed-form solution for the temperature profile is presented. A numerical spectral method is then presented, and allows highly accurate nonlinear solutions to be obtained, for the temperature and the fluid motion. These are compared against the closed-form solution in the linearized case, and the effects of nonlinearity on temperature and velocity are revealed. The results also show that periodic plume shedding from the heated region can occur in the nonlinear case.
We develop a geometric method to establish the existence and uniqueness of equilibrium states associated to some Hölder potentials for center isometries (as are regular elements of Anosov actions), in particular, the entropy maximizing measure and the SRB measure. A characterization of equilibrium states in terms of their disintegrations along stable and unstable foliations is also given. Finally, we show that the resulting system is isomorphic to a Bernoulli scheme.
Let $S=\{p_1, \ldots , p_r,\infty \}$ for prime integers $p_1, \ldots , p_r.$ Let X be an S-adic compact nilmanifold, equipped with the unique translation-invariant probability measure $\mu .$ We characterize the countable groups $\Gamma $ of automorphisms of X for which the Koopman representation $\kappa $ on $L^2(X,\mu )$ has a spectral gap. More specifically, let Y be the maximal quotient solenoid of X (thus, Y is a finite-dimensional, connected, compact abelian group). We show that $\kappa $ does not have a spectral gap if and only if there exists a $\Gamma $-invariant proper subsolenoid of Y on which $\Gamma $ acts as a virtually abelian group,
In this paper, we construct a uniformly recurrent infinite word of low complexity without uniform frequencies of letters. This shows the optimality of a bound of Boshernitzan, which gives a sufficient condition for a uniformly recurrent infinite word to admit uniform frequencies.
Let p be a prime. In this paper, we use techniques from Iwasawa theory to study questions about rank jump of elliptic curves in cyclic extensions of degree p. We also study growth of the p-primary Selmer group and the Shafarevich–Tate group in cyclic degree-p extensions and improve upon previously known results in this direction.
In this work, we explore the dynamical implications of a spectral sequence analysis of a filtered chain complex associated to a non-singular Morse–Smale (NMS) flow $\varphi $ on a closed orientable $3$-manifold $M^3$ with no heteroclinic trajectories connecting saddle periodic orbits. We introduce the novel concepts of cancellations and reductions of pairs of periodic orbits based on Franks’ morsification and Smale’s cancellation theorems. The main goal is to establish an algebraic-dynamical correspondence between the unfolding of this spectral sequence associated to $\varphi $ and a family of flows obtained by cancelling and reducing pairs of periodic orbits of $\varphi $ on $M^3$. This correspondence is achieved through a spectral sequence sweeping algorithm (SSSA), which determines the order in which these cancellations and reductions of periodic orbits occur, producing a family of NMS flows that reaches a core flow when the spectral sequence converges.
Given a locally finite graph $\Gamma $, an amenable subgroup G of graph automorphisms acting freely and almost transitively on its vertices, and a G-invariant activity function $\unicode{x3bb} $, consider the free energy $f_G(\Gamma ,\unicode{x3bb} )$ of the hardcore model defined on the set of independent sets in $\Gamma $ weighted by $\unicode{x3bb} $. Under the assumption that G is finitely generated and its word problem can be solved in exponential time, we define suitable ensembles of hardcore models and prove the following: if $\|\unicode{x3bb} \|_\infty < \unicode{x3bb} _c(\Delta )$, there exists a randomized $\epsilon $-additive approximation scheme for $f_G(\Gamma ,\unicode{x3bb} )$ that runs in time $\mathrm {poly}((1+\epsilon ^{-1})\lvert \Gamma /G \rvert )$, where $\unicode{x3bb} _c(\Delta )$ denotes the critical activity on the $\Delta $-regular tree. In addition, if G has a finite index linearly ordered subgroup such that its algebraic past can be decided in exponential time, we show that the algorithm can be chosen to be deterministic. However, we observe that if $\|\unicode{x3bb} \|_\infty> \unicode{x3bb} _c(\Delta )$, there is no efficient approximation scheme, unless $\mathrm {NP} = \mathrm {RP}$. This recovers the computational phase transition for the partition function of the hardcore model on finite graphs and provides an extension to the infinite setting. As an application in symbolic dynamics, we use these results to develop efficient approximation algorithms for the topological entropy of subshifts of finite type with enough safe symbols, we obtain a representation formula of pressure in terms of random trees of self-avoiding walks, and we provide new conditions for the uniqueness of the measure of maximal entropy based on the connective constant of a particular associated graph.
We use new methods, specific for non-locally convex quasi-Banach spaces, to investigate when the quasi-greedy bases of a $p$-Banach space for $0< p<1$ are democratic. The novel techniques we obtain permit to show in particular that all quasi-greedy bases of the Hardy space $H_p({\mathbb {D}})$ for $0< p<1$ are democratic while, in contrast, no quasi-greedy basis of $H_p({\mathbb {D}}^d)$ for $d\ge 2$ is, solving thus a problem that was raised in [7]. Applications of our results to other spaces of interest both in functional analysis and approximation theory are also provided.
We consider entropy solutions to the eikonal equation $|\nabla u|=1$ in two-space dimensions. These solutions are motivated by a class of variational problems and fail in general to have bounded variation. Nevertheless, they share several of their fine properties with BV functions: we show in particular that the set of non-Lebesgue points has at least one co-dimension.
In this paper we state some sharp maximum principle, i.e. we characterize the geometry of the sets of minima for supersolutions of equations involving the $k$-th fractional truncated Laplacian or the $k$-th fractional eigenvalue which are fully nonlinear integral operators whose nonlocality is somehow $k$-dimensional.
In this paper, we consider the time decay of the solutions to some problems arising in strain gradient thermoelasticity. We restrict to the two-dimensional case, and we assume that two dissipative mechanisms are introduced, the temperature and the mass dissipation. First, we show that this problem is well-posed proving that the operator defining it generates a contractive semigroup of linear operators. Then, assuming that the function involving the coupling terms is elliptic, the exponential decay of the solutions is concluded as well as the analyticity of the solutions. Finally, we describe how to obtain the exponential stability in the case of hyperbolic dissipation.
The Schrödinger–Poisson system describes standing waves for the nonlinear Schrödinger equation interacting with the electrostatic field. In this paper, we are concerned with the existence of positive ground states to the planar Schrödinger–Poisson system with a nonlinearity having either a subcritical or a critical exponential growth in the sense of Trudinger–Moser. A feature of this paper is that neither the finite steep potential nor the reaction satisfies any symmetry or periodicity hypotheses. The analysis developed in this paper seems to be the first attempt in the study of planar Schrödinger–Poisson systems with lack of symmetry.
We study fluctuations of the error term for the number of integer lattice points lying inside a three-dimensional Cygan–Korányi ball of large radius. We prove that the error term, suitably normalized, has a limiting value distribution which is absolutely continuous, and we provide estimates for the decay rate of the corresponding density on the real line. In addition, we establish the existence of all moments for the normalized error term, and we prove that these are given by the moments of the corresponding density.
We investigate the existence of families of symmetric periodic solutions of second kind as continuation of the elliptical orbits of the two-dimensional Kepler problem for certain symmetric differentiable perturbations using Delaunay coordinates. More precisely, we characterize the sufficient conditions for its existence and its type of stability is studied. The estimate on the characteristic multipliers of the symmetric periodic solutions is the new contribution to the field of symmetric periodic solutions. In addition, we present some results about the relationship between our symmetric periodic solutions and those obtained by the averaging method for Hamiltonian systems. As applications of our main results, we get new families of periodic solutions for: the perturbed hydrogen atom with stark and quadratic Zeeman effect, for the anisotropic Seeligers two-body problem and to the planar generalized Størmer problem.
Given a Galois extension $L/K$ of number fields, we describe fine distribution properties of Frobenius elements via invariants from representations of finite Galois groups and ramification theory. We exhibit explicit families of extensions in which we evaluate these invariants and deduce a detailed understanding and a precise description of the possible asymmetries. We establish a general bound on the generic fluctuations of the error term in the Chebotarev density theorem, which under GRH is sharper than the Murty–Murty–Saradha and Bellaïche refinements of the Lagarias–Odlyzko and Serre bounds, and which we believe is best possible (assuming simplicity, it is of the quality of Montgomery’s conjecture on primes in arithmetic progressions). Under GRH and a hypothesis on the multiplicities of zeros up to a certain height, we show that in certain families, these fluctuations are dominated by a constant lower order term. As an application of our ideas, we refine and generalize results of K. Murty and of Bellaïche, and we answer a question of Ng. In particular, in the case where $L/{\mathbb {Q}}$ is Galois and supersolvable, we prove a strong form of a conjecture of K. Murty on the unramified prime ideal of least norm in a given Frobenius set. The tools we use include the Rubinstein–Sarnak machinery based on limiting distributions and a blend of algebraic, analytic, representation theoretic, probabilistic and combinatorial techniques.
We first prove that the realization $A_{\mathrm {min}}$ of $A:={\operatorname {\mathrm {div}}}(Q\nabla )-V$ in $L^2({\mathbb {R}}^d)$ with unbounded coefficients generates a symmetric sub-Markovian and ultracontractive semigroup on $L^2({\mathbb {R}}^d)$ which coincides on $L^2({\mathbb {R}}^d)\cap C_b({\mathbb {R}}^d)$ with the minimal semigroup generated by a realization of $A$ on $C_b({\mathbb {R}}^d)$. Moreover, using time-dependent Lyapunov functions, we prove pointwise upper bounds for the heat kernel of $A$ and deduce some spectral properties of $A_{\min }$ in the case of polynomially and exponentially growing diffusion and potential coefficients.