To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that complex Fano hypersurfaces can have arbitrarily large degrees of irrationality. More precisely, if we fix a Fano index $e$, then the degree of irrationality of a very general complex Fano hypersurface of index $e$ and dimension n is bounded from below by a constant times $\sqrt{n}$. To our knowledge, this gives the first examples of rationally connected varieties with degrees of irrationality greater than 3. The proof follows a degeneration to characteristic $p$ argument, which Kollár used to prove nonrationality of Fano hypersurfaces. Along the way, we show that in a family of varieties, the invariant ‘the minimal degree of a dominant rational map to a ruled variety’ can only drop on special fibers. As a consequence, we show that for certain low-dimensional families of varieties, the degree of irrationality also behaves well under specialization.
We establish two results on three-dimensional del Pezzo fibrations in positive characteristic. First, we give an explicit bound for torsion index of relatively torsion line bundles. Second, we show the existence of purely inseparable sections with explicit bounded degree. To prove these results, we study log del Pezzo surfaces defined over imperfect fields.
For infinitely many d, Hassett showed that special cubic fourfolds of discriminant d are related to polarised K3 surfaces of degree d via their Hodge structures. For half of the d, each associated K3 surface (S, L) canonically yields another one, (Sτ, Lτ). We prove that Sτ is isomorphic to the moduli space of stable coherent sheaves on S with Mukai vector (3, L, d/6). We also explain for which d the Hilbert schemes Hilbn (S) and Hilbn (Sτ) are birational.
We prove the deformation invariance of Kodaira dimension and of certain plurigenera and the existence of canonical models for log surfaces which are smooth over an integral Noetherian scheme $S$.
In this paper, we establish a vanishing theorem of Nadel type for the Witt multiplier ideals on threefolds over perfect fields of characteristic larger than five. As an application, if a projective normal threefold over $\mathbb{F}_{q}$ is not klt and its canonical divisor is anti-ample, then the number of the rational points on the klt-locus is divisible by $q$.
In this note, using methods introduced by Hacon et al. [‘Boundedness of varieties of log general type’, Proceedings of Symposia in Pure Mathematics, Volume 97 (American Mathematical Society, Providence, RI, 2018) 309–348], we study the accumulation points of volumes of varieties of log general type. First, we show that if the set of boundary coefficients Λ satisfies the descending chain condition (DCC), is closed under limits and contains 1, then the corresponding set of volumes satisfies the DCC and is closed under limits. Then, we consider the case of ε-log canonical varieties, for 0 < ε < 1. In this situation, we prove that if Λ is finite, then the corresponding set of volumes is discrete.
We develop some foundational results in a higher-dimensional foliated Mori theory, and show how these results can be used to prove a structure theorem for the Kleiman–Mori cone of curves in terms of the numerical properties of $K_{{\mathcal{F}}}$ for rank 2 foliations on threefolds. We also make progress toward realizing a minimal model program (MMP) for rank 2 foliations on threefolds.
We discuss the geometry of rational maps from a projective space of an arbitrary dimension to the product of projective spaces of lower dimensions induced by linear projections. In particular, we give an algebro-geometric variant of the projective reconstruction theorem by Hartley and Schaffalitzky.
We provide evidence for this conclusion: given a finite Galois cover $f:X\rightarrow \mathbb{P}_{\mathbb{Q}}^{1}$ of group $G$, almost all (in a density sense) realizations of $G$ over $\mathbb{Q}$ do not occur as specializations of $f$. We show that this holds if the number of branch points of $f$ is sufficiently large, under the abc-conjecture and, possibly, the lower bound predicted by the Malle conjecture for the number of Galois extensions of $\mathbb{Q}$ of given group and bounded discriminant. This widely extends a result of Granville on the lack of $\mathbb{Q}$-rational points on quadratic twists of hyperelliptic curves over $\mathbb{Q}$ with large genus, under the abc-conjecture (a diophantine reformulation of the case $G=\mathbb{Z}/2\mathbb{Z}$ of our result). As a further evidence, we exhibit a few finite groups $G$ for which the above conclusion holds unconditionally for almost all covers of $\mathbb{P}_{\mathbb{Q}}^{1}$ of group $G$. We also introduce a local–global principle for specializations of Galois covers $f:X\rightarrow \mathbb{P}_{\mathbb{Q}}^{1}$ and show that it often fails if $f$ has abelian Galois group and sufficiently many branch points, under the abc-conjecture. On the one hand, such a local–global conclusion underscores the ‘smallness’ of the specialization set of a Galois cover of $\mathbb{P}_{\mathbb{Q}}^{1}$. On the other hand, it allows to generate conditionally ‘many’ curves over $\mathbb{Q}$ failing the Hasse principle, thus generalizing a recent result of Clark and Watson devoted to the hyperelliptic case.
We describe the irreducible components of the jet schemes with origin in the singular locus of a two-dimensional quasi-ordinary hypersurface singularity. A weighted graph is associated with these components and with their embedding dimensions and their codimensions in the jet schemes of the ambient space. We prove that the data of this weighted graph is equivalent to the data of the topological type of the singularity. We also determine a component of the jet schemes (equivalent to a divisorial valuation on $\mathbb{A}^{3}$), that computes the log-canonical threshold of the singularity embedded in $\mathbb{A}^{3}$. This provides us with pairs $X\subset \mathbb{A}^{3}$ whose log-canonical thresholds are not computed by monomial divisorial valuations. Note that for a pair $C\subset \mathbb{A}^{2}$, where $C$ is a plane curve, the log-canonical threshold is always computed by a monomial divisorial valuation (in suitable coordinates of $\mathbb{A}^{2}$).
We prove that every birationally superrigid Fano variety whose alpha invariant is greater than (respectively no smaller than) $\frac{1}{2}$ is K-stable (respectively K-semistable). We also prove that the alpha invariant of a birationally superrigid Fano variety of dimension $n$ is at least $1/(n+1)$ (under mild assumptions) and that the moduli space (if it exists) of birationally superrigid Fano varieties is separated.
We prove an upper bound on the log canonical threshold of a hypersurface that satisfies a certain power condition and use it to prove several generalizations of Igusa’s conjecture on exponential sums, with the log canonical threshold in the exponent of the estimates. We show that this covers optimally all situations of the conjectures for nonrational singularities by comparing the log canonical threshold with a local notion of the motivic oscillation index.
For any prime number $p$ and field $k$, we characterize the $p$-retract rationality of an algebraic $k$-torus in terms of its character lattice. We show that a $k$-torus is retract rational if and only if it is $p$-retract rational for every prime $p$, and that the Noether problem for retract rationality for a group of multiplicative type $G$ has an affirmative answer for $G$ if and only if the Noether problem for $p$-retract rationality for $G$ has a positive answer for all $p$. For every finite set of primes $S$ we give examples of tori that are $p$-retract rational if and only if $p\notin S$.
This paper introduces an algebro-geometric setting for the space of bifurcation functions involved in the local Hilbert’s 16th problem on a period annulus. Each possible bifurcation function is in one-to-one correspondence with a point in the exceptional divisor E of the canonical blow-up BI ℂn of the Bautin ideal I. In this setting, the notion of essential perturbation, first proposed by Iliev, is defined via irreducible components of the Nash space of arcs Arc(BI ℂn, E). The example of planar quadratic vector fields in the Kapteyn normal form is further discussed.
We construct non-archimedean SYZ (Strominger–Yau–Zaslow) fibrations for maximally degenerate Calabi–Yau varieties, and we show that they are affinoid torus fibrations away from a codimension-two subset of the base. This confirms a prediction by Kontsevich and Soibelman. We also give an explicit description of the induced integral affine structure on the base of the SYZ fibration. Our main technical tool is a study of the structure of minimal dlt (divisorially log terminal) models along one-dimensional strata.
Let be a dominant rational self-map of a smooth projective variety defined over $\overline{\mathbb{Q}}$. For each point $P\in X(\overline{\mathbb{Q}})$ whose forward $f$-orbit is well defined, Silverman introduced the arithmetic degree $\unicode[STIX]{x1D6FC}_{f}(P)$, which measures the growth rate of the heights of the points $f^{n}(P)$. Kawaguchi and Silverman conjectured that $\unicode[STIX]{x1D6FC}_{f}(P)$ is well defined and that, as $P$ varies, the set of values obtained by $\unicode[STIX]{x1D6FC}_{f}(P)$ is finite. Based on constructions by Bedford and Kim and by McMullen, we give a counterexample to this conjecture when $X=\mathbb{P}^{4}$.
Soient $S$ un schéma nœthérien et $f:X\rightarrow S$ un morphisme propre. D’après SGA 4 XIV, pour tout faisceau constructible $\mathscr{F}$ de $\mathbb{Z}/n\mathbb{Z}$-modules sur $X$, les faisceaux de $\mathbb{Z}/n\mathbb{Z}$-modules $\mathtt{R}^{i}f_{\star }\mathscr{F}$, obtenus par image directe (pour la topologie étale), sont également constructibles : il existe une stratification $\mathfrak{S}$ de $S$ telle que ces faisceaux soient localement constants constructibles sur les strates. À la suite de travaux de N. Katz et G. Laumon, ou L. Illusie, dans le cas particulier où $S$ est génériquement de caractéristique nulle ou bien les faisceaux $\mathscr{F}$ sont constants (de torsion inversible sur $S$), on étudie ici la dépendance de $\mathfrak{S}$ en $\mathscr{F}$. On montre qu’une condition naturelle de constructibilité et modération « uniforme » satisfaite par les faisceaux constants, introduite par O. Gabber, est stable par les foncteurs $\mathtt{R}^{i}f_{\star }$. Si $f$ n’est pas supposé propre, ce résultat subsiste sous réserve de modération à l’infini, relativement à $S$. On démontre aussi l’existence de bornes uniformes sur les nombres de Betti, qui s’appliquent notamment pour les fibres des faisceaux $\mathtt{R}^{i}f_{\star }\mathbb{F}_{\ell }$, où $\ell$ parcourt les nombres premiers inversibles sur $S$.
We generalise Simpson’s nonabelian Hodge correspondence to the context of projective varieties with Kawamata log terminal (klt) singularities. The proof relies on a descent theorem for numerically flat vector bundles along birational morphisms. In its simplest form, this theorem asserts that given any klt variety $X$ and any resolution of singularities, any vector bundle on the resolution that appears to come from $X$ numerically, does indeed come from $X$. Furthermore, and of independent interest, a new restriction theorem for semistable Higgs sheaves defined on the smooth locus of a normal, projective variety is established.
The main aim of this paper is to show that a cyclic cover of ℙn branched along a very general divisor of degree d is not stably rational, provided that n ≥ 3 and d ≥ n + 1. This generalizes the result of Colliot-Thélène and Pirutka. Generalizations for cyclic covers over complete intersections and applications to suitable Fano manifolds are also discussed.
We bring examples of toric varieties blown up at a point in the torus that do not have finitely generated Cox rings. These examples are generalizations of our earlier work, where toric surfaces of Picard number 1 were studied. In this article we consider toric varieties of higher Picard number and higher dimension. In particular, we bring examples of weighted projective 3-spaces blown up at a point that do not have finitely generated Cox rings.