To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we prove the nonvanishing and some special cases of the abundance for log canonical threefold pairs over an algebraically closed field k of characteristic $p> 3$. More precisely, we prove that if $(X,B)$ be a projective log canonical threefold pair over k and $K_{X}+B$ is pseudo-effective, then $\kappa (K_{X}+B)\geq 0$, and if $K_{X}+B$ is nef and $\kappa (K_{X}+B)\geq 1$, then $K_{X}+B$ is semi-ample.
As applications, we show that the log canonical rings of projective log canonical threefold pairs over k are finitely generated and the abundance holds when the nef dimension $n(K_{X}+B)\leq 2$ or when the Albanese map $a_{X}:X\to \mathrm {Alb}(X)$ is nontrivial. Moreover, we prove that the abundance for klt threefold pairs over k implies the abundance for log canonical threefold pairs over k.
For certain quasismooth Calabi–Yau hypersurfaces in weighted projective space, the Berglund-Hübsch-Krawitz (BHK) mirror symmetry construction gives a concrete description of the mirror. We prove that the minimal log discrepancy of the quotient of such a hypersurface by its toric automorphism group is closely related to the weights and degree of the BHK mirror. As an application, we exhibit klt Calabi–Yau varieties with the smallest known minimal log discrepancy. We conjecture that these examples are optimal in every dimension.
In this paper, together with the preceding Part I [10], we develop a framework for tame geometry on Henselian valued fields of characteristic zero, called Hensel minimality. It adds to [10] the treatment of the mixed characteristic case. Hensel minimality is inspired by o-minimality and its role in real geometry and diophantine applications. We develop geometric results and applications for Hensel minimal structures that were previously known only under stronger or less axiomatic assumptions, and which often have counterparts in o-minimal structures. We prove a Jacobian property, a strong form of Taylor approximations of definable functions, resplendency results and cell decomposition, all under Hensel minimality – more precisely, $1$-h-minimality. We obtain a diophantine application of counting rational points of bounded height on Hensel minimal curves.
We give conditions for a uniruled variety of dimension at least 2 to be nonsolid. This study provides further evidence to a conjecture by Abban and Okada on the solidity of Fano 3-folds. To complement our results we write explicit birational links from Fano 3-folds of high codimension embedded in weighted projective spaces.
Let $X_4\subset \mathbb {P}^{n+1}$ be a quartic hypersurface of dimension $n\geq 4$ over an infinite field k. We show that if either $X_4$ contains a linear subspace $\Lambda $ of dimension $h\geq \max \{2,\dim (\Lambda \cap \operatorname {\mathrm {Sing}}(X_4))+2\}$ or has double points along a linear subspace of dimension $h\geq 3$, a smooth k-rational point and is otherwise general, then $X_4$ is unirational over k. This improves previous results by A. Predonzan and J. Harris, B. Mazur and R. Pandharipande for quartics. We also provide a density result for the k-rational points of quartic $3$-folds with a double plane over a number field, and several unirationality results for quintic hypersurfaces over a $C_r$ field.
We give an explicit characterization on the singularities of exceptional pairs in any dimension. In particular, we show that any exceptional Fano surface is $\frac {1}{42}$-lc. As corollaries, we show that any $\mathbb R$-complementary surface X has an n-complement for some integer $n\leq 192\cdot 84^{128\cdot 42^5}\approx 10^{10^{10.5}}$, and Tian’s alpha invariant for any surface is $\leq 3\sqrt {2}\cdot 84^{64\cdot 42^5}\approx 10^{10^{10.2}}$. Although the latter two values are expected to be far from being optimal, they are the first explicit upper bounds of these two algebraic invariants for surfaces.
We apply Angehrn-Siu-Helmke’s method to estimate basepoint freeness thresholds of higher dimensional polarized abelian varieties. We showed that a conjecture of Caucci holds for very general polarized abelian varieties in the moduli spaces $\mathcal {A}_{g, l}$ with only finitely many possible exceptions of primitive polarization types l in each dimension g. We improved the bound of basepoint freeness thresholds of any polarized abelian $4$-folds and simple abelian $5$-folds.
Let $(X,B)$ be a pair, and let $f \colon X \rightarrow S$ be a contraction with $-({K_{X}} + B)$ nef over S. A conjecture, known as the Shokurov–Kollár connectedness principle, predicts that $f^{-1} (s) \cap \operatorname {\mathrm {Nklt}}(X,B)$ has at most two connected components, where $s \in S$ is an arbitrary schematic point and $\operatorname {\mathrm {Nklt}}(X,B)$ denotes the non-klt locus of $(X,B)$. In this work, we prove this conjecture, characterizing those cases in which $\operatorname {\mathrm {Nklt}}(X,B)$ fails to be connected, and we extend these same results also to the category of generalized pairs. Finally, we apply these results and the techniques to the study of the dual complex for generalized log Calabi–Yau pairs, generalizing results of Kollár–Xu [Invent. Math. 205 (2016), 527–557] and Nakamura [Int. Math. Res. Not. IMRN13 (2021), 9802–9833].
Let $ {\mathcal C} $ be an algebraic curve and c be an analytically irreducible singular point of ${\mathcal C}$. The set ${\mathscr {L}_{\infty }}({\mathcal C})^c$ of arcs with origin c is an irreducible closed subset of the space of arcs on ${\mathcal C}$. We obtain a presentation of the formal neighborhood of the generic point of this set which can be interpreted in terms of deformations of the generic arc defined by this point. This allows us to deduce a strong connection between the aforementioned formal neighborhood and the formal neighborhood in the arc space of any primitive parametrization of the singularity c. This may be interpreted as the fact that analytically along ${\mathscr {L}_{\infty }}({\mathcal C})^c$ the arc space is a product of a finite dimensional singularity and an infinite dimensional affine space.
We study dynamics of solutions in the initial value space of the sixth Painlevé equation as the independent variable approaches zero. Our main results describe the repeller set, show that the number of poles and zeroes of general solutions is unbounded and that the complex limit set of each solution exists and is compact and connected.
We prove an algebraic version of the Hamilton–Tian conjecture for all log Fano pairs. More precisely, we show that any log Fano pair admits a canonical two-step degeneration to a reduced uniformly Ding stable triple, which admits a Kähler–Ricci soliton when the ground field .
For each central essential hyperplane arrangement $\mathcal{A}$ over an algebraically closed field, let $Z_\mathcal{A}^{\hat\mu}(T)$ denote the Denef–Loeser motivic zeta function of $\mathcal{A}$. We prove a formula expressing $Z_\mathcal{A}^{\hat\mu}(T)$ in terms of the Milnor fibers of related hyperplane arrangements. This formula shows that, in a precise sense, the degree to which $Z_{\mathcal{A}}^{\hat\mu}(T)$ fails to be a combinatorial invariant is completely controlled by these Milnor fibers. As one application, we use this formula to show that the map taking each complex arrangement $\mathcal{A}$ to the Hodge–Deligne specialization of $Z_{\mathcal{A}}^{\hat\mu}(T)$ is locally constant on the realization space of any loop-free matroid. We also prove a combinatorial formula expressing the motivic Igusa zeta function of $\mathcal{A}$ in terms of the characteristic polynomials of related arrangements.
We prove some $\ell $-independence results on local constancy of étale cohomology of rigid analytic varieties. As a result, we show that a closed subscheme of a proper scheme over an algebraically closed complete non-archimedean field has a small open neighbourhood in the analytic topology such that, for every prime number $\ell $ different from the residue characteristic, the closed subscheme and the open neighbourhood have the same étale cohomology with ${\mathbb Z}/\ell {\mathbb Z}$-coefficients. The existence of such an open neighbourhood for each $\ell $ was proved by Huber. A key ingredient in the proof is a uniform refinement of a theorem of Orgogozo on the compatibility of the nearby cycles over general bases with base change.
Let $(X\ni x,B)$ be an lc surface germ. If $X\ni x$ is klt, we show that there exists a divisor computing the minimal log discrepancy of $(X\ni x,B)$ that is a Kollár component of $X\ni x$. If $B\not=0$ or $X\ni x$ is not Du Val, we show that any divisor computing the minimal log discrepancy of $(X\ni x,B)$ is a potential lc place of $X\ni x$. This extends a result of Blum and Kawakita who independently showed that any divisor computing the minimal log discrepancy on a smooth surface is a potential lc place.
Let V be a smooth quasi-projective complex surface such that the first three logarithmic plurigenera $\overline P_1(V)$, $\overline P_2(V)$ and $\overline P_3(V)$ are equal to 1 and the logarithmic irregularity $\overline q(V)$ is equal to $2$. We prove that the quasi-Albanese morphism $a_V\colon V\to A(V)$ is birational and there exists a finite set S such that $a_V$ is proper over $A(V)\setminus S$, thus giving a sharp effective version of a classical result of Iitaka [12].
We show that the only finite quasi-simple non-abelian groups that can faithfully act on rationally connected threefolds are the following groups: ${\mathfrak{A}}_5$, ${\text{PSL}}_2(\textbf{F}_7)$, ${\mathfrak{A}}_6$, ${\text{SL}}_2(\textbf{F}_8)$, ${\mathfrak{A}}_7$, ${\text{PSp}}_4(\textbf{F}_3)$, ${\text{SL}}_2(\textbf{F}_{7})$, $2.{\mathfrak{A}}_5$, $2.{\mathfrak{A}}_6$, $3.{\mathfrak{A}}_6$ or $6.{\mathfrak{A}}_6$. All of these groups with a possible exception of $2.{\mathfrak{A}}_6$ and $6.{\mathfrak{A}}_6$ indeed act on some rationally connected threefolds.
In this note, we prove the semiampleness conjecture for Kawamata log terminal Calabi–Yau (CY) surface pairs over an excellent base ring. As applications, we deduce that generalized abundance and Serrano’s conjecture hold for surfaces. Finally, we study the semiampleness conjecture for CY threefolds over a mixed characteristic DVR.
The pentagram map, introduced by Schwartz [The pentagram map. Exp. Math.1(1) (1992), 71–81], is a dynamical system on the moduli space of polygons in the projective plane. Its real and complex dynamics have been explored in detail. We study the pentagram map over an arbitrary algebraically closed field of characteristic not equal to 2. We prove that the pentagram map on twisted polygons is a discrete integrable system, in the sense of algebraic complete integrability: the pentagram map is birational to a self-map of a family of abelian varieties. This generalizes Soloviev’s proof of complex integrability [F. Soloviev. Integrability of the pentagram map. Duke Math. J.162(15) (2013), 2815–2853]. In the course of the proof, we construct the moduli space of twisted n-gons, derive formulas for the pentagram map, and calculate the Lax representation by characteristic-independent methods.
A famous problem in birational geometry is to determine when the birational automorphism group of a Fano variety is finite. The Noether–Fano method has been the main approach to this problem. The purpose of this paper is to give a new approach to the problem by showing that in every positive characteristic, there are Fano varieties of arbitrarily large index with finite (or even trivial) birational automorphism group. To do this, we prove that these varieties admit ample and birationally equivariant line bundles. Our result applies the differential forms that Kollár produces on $p$-cyclic covers in characteristic $p > 0$.