We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let X be a smooth projective curve. We consider the dual reductive pair , over X, where H splits on an étale two-sheeted covering . Let BunG (respectively, BunH) be the stack of G-torsors (respectively, H-torsors) on X. We study the functors FG and FH between the derived categories D(BunG) and D(BunH), which are analogs of the classical theta-lifting operators in the framework of the geometric Langlands program. Assume n=m=1 and H nonsplit, that is, with connected. We establish the geometric Langlands functoriality for this pair. Namely, we show that FG :D(BunH)→D(BunG)commutes with Hecke operators with respect to the corresponding map of Langlands L-groups LH→LG. As an application, we calculate Waldspurger periods of cuspidal automorphic sheaves on BunGL2 and Bessel periods of theta-lifts from to . Based on these calculations, we give three conjectural constructions of certain automorphic sheaves on (one of them makes sense for -modules only).
Given a curve of genus 3 with an unramified double cover, we give an explicit description of the associated Prym variety. We also describe how an unramified double cover of a non-hyperelliptic genus 3 curve can be mapped into the Jacobian of a curve of genus 2 over its field of definition and how this can be used to perform Chabauty- and Brauer–Manin-type calculations for curves of genus 5 with an fixed-point-free involution. As an application, we determine the rational points on a smooth plane quartic and give examples of curves of genus 3 and 5 violating the Hasse principle. The methods are, in principle, applicable to any genus 3 curve with a double cover. We also show how these constructions can be used to design smooth plane quartics with specific arithmetic properties. As an example, we give a smooth plane quartic with all 28 bitangents defined over . By specialization, this also gives examples over .
In this paper, we use the perspective of linear series, and in particular results following from the degeneration tools of limit linear series, to give a number of new results on the existence and non-existence of tamely branched covers of the projective line in positive characteristic. Our results are both in terms of ramification indices and the sharper invariant of monodromy cycles, and the first class of results are obtained by intrinsically algebraic and positive-characteristic arguments.
In this paper is considered the average size of the 2-Selmer groups of a class of quadratic twists of each elliptic curve over ℚ with ℚ-torsion group ℤ2 × ℤ2. The existence is shown of a positive proportion of quadratic twists of such a curve, each of which has rank 0 Mordell-Weil group.
We prove a new formula for the number of integral points on an elliptic curve over a function field without assuming that the coefficient field is algebraically closed. This is an improvement on the standard results of Hindry-Silverman.
Two projective nonsingular complex algebraic curves X and Y defined over the field R of real numbers can be isomorphic while their sets X(R) and Y(R) of R-rational points could be even non homeomorphic. This leads to the count of the number of real forms of a complex algebraic curve X, that is, those nonisomorphic real algebraic curves whose complexifications are isomorphic to X. In this paper we compute, as a function of genus, the maximum number of such real forms that a complex algebraic curve admits.
In a finite Desarguesian plane of odd order, it was shown by Segre thirty years ago that a set of maximum size with at most two points on a line is a conic. Here, in a plane of odd or even order, sufficient conditions are given for a set with at most three points on a line to be a cubic curve. The case of an elliptic curve is of particular interest.
Let K be a number field and E/K an elliptic curve. As is well known [3, 4,[ if K has class number 1, then there exists a global minimal Weierstrass equation for E. Our main goal in this paper is to prove the following converse to this statement.