We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove model completeness for the expansion of the real field by the Weierstrass ℘ function as a function of the variable z and the parameter (or period) τ. We need to existentially define the partial derivatives of the ℘ function with respect to the variable z and the parameter τ. To obtain this result, it is necessary to include in the structure function symbols for the unrestricted exponential function and restricted sine function, the Weierstrass ζ function and the quasi-modular form E2 (we conjecture that these functions are not existentially definable from the functions ℘ alone or even if we use the exponential and restricted sine functions). We prove some auxiliary model-completeness results with the same functions composed with appropriate change of variables. In the conclusion, we make some remarks about the non-effectiveness of our proof and the difficulties to be overcome to obtain an effective model-completeness result, and how to extend these results to appropriate expansion of the real field by automorphic forms.
In this paper we construct a $\mathbb{Q}$-linear tannakian category $\mathsf{MEM}_{1}$ of universal mixed elliptic motives over the moduli space ${\mathcal{M}}_{1,1}$ of elliptic curves. It contains $\mathsf{MTM}$, the category of mixed Tate motives unramified over the integers. Each object of $\mathsf{MEM}_{1}$ is an object of $\mathsf{MTM}$ endowed with an action of $\text{SL}_{2}(\mathbb{Z})$ that is compatible with its structure. Universal mixed elliptic motives can be thought of as motivic local systems over ${\mathcal{M}}_{1,1}$ whose fiber over the tangential base point $\unicode[STIX]{x2202}/\unicode[STIX]{x2202}q$ at the cusp is a mixed Tate motive. The basic structure of the tannakian fundamental group of $\mathsf{MEM}$ is determined and the lowest order terms of a set (conjecturally, a minimal generating set) of relations are deduced from computations of Brown. This set of relations includes the arithmetic relations, which describe the ‘infinitesimal Galois action’. We use the presentation to give a new and more conceptual proof of the Ihara–Takao congruences.
For a pair $(R,I)$, where $R$ is a standard graded domain of dimension $d$ over an algebraically closed field of characteristic 0, and $I$ is a graded ideal of finite colength, we prove that the existence of $\lim _{p\rightarrow \infty }e_{HK}(R_{p},I_{p})$ is equivalent, for any fixed $m\geqslant d-1$, to the existence of $\lim _{p\rightarrow \infty }\ell (R_{p}/I_{p}^{[p^{m}]})/p^{md}$. This we get as a consequence of Theorem 1.1: as $p\longrightarrow \infty$, the convergence of the Hilbert–Kunz (HK) density function $f(R_{p},I_{p})$ is equivalent to the convergence of the truncated HK density functions $f_{m}(R_{p},I_{p})$ (in $L^{\infty }$ norm) of the mod$p$reductions$(R_{p},I_{p})$, for any fixed $m\geqslant d-1$. In particular, to define the HK density function $f_{R,I}^{\infty }$ in char 0, it is enough to prove the existence of $\lim _{p\rightarrow \infty }f_{m}(R_{p},I_{p})$, for any fixed $m\geqslant d-1$. This allows us to prove the existence of $e_{HK}^{\infty }(R,I)$ in many new cases, for example, when Proj R is a Segre product of curves.
We compute the Alexander polynomial of a nonreduced nonirreducible complex projective plane curve with mutually coprime orders of vanishing along its irreducible components in terms of certain multiplier ideals.
In this paper, we prove that the set of equivalence classes of dormant opers of rank $p-1$ over a projective smooth curve of genus ${\geqslant}2$ over an algebraically closed field of characteristic $p>0$ is of cardinality one.
We rewrite in modern language a classical construction by W. E. Edge showing a pencil of sextic nodal curves admitting A5 as its group of automorphism. Next, we discuss some other aspects of this pencil, such as the associated fibration and its connection to the singularities of the moduli of six-dimensional abelian varieties.
Gromov–Witten invariants have been constructed to be deformation invariant, but their behavior under other transformations is subtle. We show that logarithmic Gromov–Witten invariants are also invariant under appropriately defined logarithmic modifications.
We show that the canonical lift construction for ordinary elliptic curves over perfect fields of characteristic $p>0$ extends uniquely to arbitrary families of ordinary elliptic curves, even over $p$-adic formal schemes. In particular, the universal ordinary elliptic curve has a canonical lift. The existence statement is largely a formal consequence of the universal property of Witt vectors applied to the moduli space of ordinary elliptic curves, at least with enough level structure. As an application, we show how this point of view allows for more formal proofs of recent results of Finotti and Erdoğan.
In this paper, for each $n\geqslant g\geqslant 0$ we consider the moduli stack $\widetilde{{\mathcal{U}}}_{g,n}^{ns}$ of curves $(C,p_{1},\ldots ,p_{n},v_{1},\ldots ,v_{n})$ of arithmetic genus $g$ with $n$ smooth marked points $p_{i}$ and nonzero tangent vectors $v_{i}$ at them, such that the divisor $p_{1}+\cdots +p_{n}$ is nonspecial (has $h^{1}=0$) and ample. With some mild restrictions on the characteristic we show that it is a scheme, affine over the Grassmannian $G(n-g,n)$. We also construct an isomorphism of $\widetilde{{\mathcal{U}}}_{g,n}^{ns}$ with a certain relative moduli of $A_{\infty }$-structures (up to an equivalence) over a family of graded associative algebras parametrized by $G(n-g,n)$.
Affine varieties among all algebraic varieties have simple structures. For example, an affine variety does not contain any complete algebraic curve. In this paper, we study affine-related properties of strata of $k$-differentials on smooth curves which parameterize sections of the $k$th power of the canonical line bundle with prescribed orders of zeros and poles. We show that if there is a prescribed pole of order at least $k$, then the corresponding stratum does not contain any complete curve. Moreover, we explore the amusing question whether affine invariant manifolds arising from Teichmüller dynamics are affine varieties, and confirm the answer for Teichmüller curves, Hurwitz spaces of torus coverings, hyperelliptic strata as well as some low genus strata.
Let $C$ be a Petri general curve of genus $g$ and $E$ a general stable vector bundle of rank $r$ and slope $g-1$ over $C$ with $h^{0}(C,E)=r+1$. For $g\geqslant (2r+2)(2r+1)$, we show how the bundle $E$ can be recovered from the tangent cone to the generalised theta divisor $\unicode[STIX]{x1D6E9}_{E}$ at ${\mathcal{O}}_{C}$. We use this to give a constructive proof and a sharpening of Brivio and Verra’s theorem that the theta map $\mathit{SU}_{C}(r){\dashrightarrow}|r\unicode[STIX]{x1D6E9}|$ is generically injective for large values of $g$.
We show that a genus $2$ curve over a number field whose jacobian has complex multiplication will usually have stable bad reduction at some prime. We prove this by computing the Faltings height of the jacobian in two different ways. First, we use a known case of the Colmez conjecture, due to Colmez and Obus, that is valid when the CM field is an abelian extension of the rationals. It links the height and the logarithmic derivatives of an $L$-function. The second formula involves a decomposition of the height into local terms based on a hyperelliptic model. We use the reduction theory of genus $2$ curves as developed by Igusa, Liu, Saito, and Ueno to relate the contribution at the finite places with the stable bad reduction of the curve. The subconvexity bounds by Michel and Venkatesh together with an equidistribution result of Zhang are used to bound the infinite places.
We study various measures of irrationality for hypersurfaces of large degree in projective space and other varieties. These include the least degree of a rational covering of projective space, and the minimal gonality of a covering family of curves. The theme is that positivity properties of canonical bundles lead to lower bounds on these invariants. In particular, we prove that if $X\subseteq \mathbf{P}^{n+1}$ is a very general smooth hypersurface of dimension $n$ and degree $d\geqslant 2n+1$, then any dominant rational mapping $f:X{\dashrightarrow}\mathbf{P}^{n}$ must have degree at least $d-1$. We also propose a number of open problems, and we show how our methods lead to simple new proofs of results of Ran and Beheshti–Eisenbud concerning varieties of multi-secant lines.
We prove a version of Clifford’s theorem for metrized complexes. Namely, a metrized complex that carries a divisor of degree $2r$ and rank $r$ (for $0<r<g-1$) also carries a divisor of degree 2 and rank 1. We provide a structure theorem for hyperelliptic metrized complexes, and use it to classify divisors of degree bounded by the genus. We discuss a tropical version of Martens’ theorem for metric graphs.
Deninger et Werner ont développé un analogue pour les courbes $p$-adiques de la correspondance classique de Narasimhan et Seshadri entre les fibrés vectoriels stables de degré $0$ et les représentations unitaires du groupe fondamental topologique pour une courbe complexe propre et lisse. Par transport parallèle, ils ont associé fonctoriellement à chaque fibré vectoriel sur une courbe $p$-adique, dont la réduction est fortement semi-stable de degré $0$, une représentation $p$-adique du groupe fondamental de la courbe. Ils se sont posé quelques questions : leur foncteur est-il pleinement fidèle ? La cohomologie des systèmes locaux fournis par celui-ci admet-elle une filtration de Hodge-Tate ? Leur construction est-elle compatible avec la correspondance de Simpson $p$-adique développée par Faltings ? Nous répondons à ces questions dans cet article.
Using the geometry of an almost del Pezzo threefold, we show that the moduli space ${\mathcal{S}}_{g,1}^{0,\text{hyp}}$ of genus $g$ one-pointed ineffective spin hyperelliptic curves is rational for every $g\geqslant 2$.
For each discriminant $D>1$, McMullen constructed the Prym–Teichmüller curves $W_{D}(4)$ and $W_{D}(6)$ in ${\mathcal{M}}_{3}$ and ${\mathcal{M}}_{4}$, which constitute one of the few known infinite families of geometrically primitive Teichmüller curves. In the present paper, we determine for each $D$ the number and type of orbifold points on $W_{D}(6)$. These results, together with a previous result of the two authors in the genus $3$ case and with results of Lanneau–Nguyen and Möller, complete the topological characterisation of all Prym–Teichmüller curves and determine their genus. The study of orbifold points relies on the analysis of intersections of $W_{D}(6)$ with certain families of genus $4$ curves with extra automorphisms. As a side product of this study, we give an explicit construction of such families and describe their Prym–Torelli images, which turn out to be isomorphic to certain products of elliptic curves. We also give a geometric description of the flat surfaces associated to these families and describe the asymptotics of the genus of $W_{D}(6)$ for large $D$.
This is the first of three papers in which we give a moduli interpretation of the second flip in the log minimal model program for $\overline{M}_{g}$, replacing the locus of curves with a genus $2$ Weierstrass tail by a locus of curves with a ramphoid cusp. In this paper, for $\unicode[STIX]{x1D6FC}\in (2/3-\unicode[STIX]{x1D716},2/3+\unicode[STIX]{x1D716})$, we introduce new $\unicode[STIX]{x1D6FC}$-stability conditions for curves and prove that they are deformation open. This yields algebraic stacks $\overline{{\mathcal{M}}}_{g}(\unicode[STIX]{x1D6FC})$ related by open immersions $\overline{{\mathcal{M}}}_{g}(2/3+\unicode[STIX]{x1D716}){\hookrightarrow}\overline{{\mathcal{M}}}_{g}(2/3){\hookleftarrow}\overline{{\mathcal{M}}}_{g}(2/3-\unicode[STIX]{x1D716})$. We prove that around a curve $C$ corresponding to a closed point in $\overline{{\mathcal{M}}}_{g}(2/3)$, these open immersions are locally modeled by variation of geometric invariant theory for the action of $\text{Aut}(C)$ on the first-order deformation space of $C$.
We prove a general criterion for an algebraic stack to admit a good moduli space. This result may be considered as a generalization of the Keel–Mori theorem, which guarantees the existence of a coarse moduli space for a separated Deligne–Mumford stack. We apply this result to prove that the moduli stacks $\overline{{\mathcal{M}}}_{g,n}(\unicode[STIX]{x1D6FC})$ parameterizing $\unicode[STIX]{x1D6FC}$-stable curves introduced in [J. Alper et al., Second flip in the Hassett–Keel program: a local description, Compositio Math. 153 (2017), 1547–1583] admit good moduli spaces.
Making use of Gruson–Raynaud’s technique of ‘platification par éclatement’, Kerz and Strunk proved that the negative homotopy $K$-theory groups of a Noetherian scheme $X$ of Krull dimension $d$ vanish below $-d$. In this article, making use of noncommutative algebraic geometry, we improve this result in the case of quotient singularities by proving that the negative homotopy $K$-theory groups vanish below $-1$. Furthermore, in the case of cyclic quotient singularities, we provide an explicit ‘upper bound’ for the first negative homotopy $K$-theory group.