To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We solve the inverse differential Galois problem over differential fields with a large field of constants of infinite transcendence degree over $\mathbb{Q}$. More generally, we show that over such a field, every split differential embedding problem can be solved. In particular, we solve the inverse differential Galois problem and all split differential embedding problems over $\mathbb{Q}_{p}(x)$.
In this paper, we study how to distinguish the embedded topology of a smooth quartic and its bitangent lines. In order to do this, we introduce the concept of two-graphs and switching classes from graph theory. This new method improves previous results about a quartic and three bitangent lines considered by E. Artal Bartolo and J. Vallès, four bitangent lines considered by the authors and H. Tokunaga, and enables us to distinguish the embedded topology of a smooth quartic and five or more bitangent lines. As an application, we obtain a new Zariski 5-tuple and a Zariski 9-tuple for arrangements consisting of a smooth quartic and five of its bitangent lines and six of its bitangent lines, respectively.
For $G$ a split semi-simple group scheme and $P$ a principal $G$-bundle on a relative curve $X\rightarrow S$, we study a natural obstruction for the triviality of $P$ on the complement of a relatively ample Cartier divisor $D\subset X$. We show, by constructing explicit examples, that the obstruction is nontrivial if $G$ is not simply connected, but it can be made to vanish by a faithfully flat base change, if $S$ is the spectrum of a dvr (and some other hypotheses). The vanishing of this obstruction is shown to be a sufficient condition for étale local triviality if $S$ is a smooth curve, and the singular locus of $X-D$ is finite over $S$.
We prove an analogue of Belyi’s theorem in characteristic two. Our proof consists of the following three steps. We first introduce a new notion called pseudo-tameness for morphisms between curves over an algebraically closed field of characteristic two. Secondly, we prove the existence of a ‘pseudo-tame’ rational function by showing the vanishing of an obstruction class. Finally, we construct a tamely ramified rational function from the ‘pseudo-tame’ rational function.
We investigate the density of square-free values of polynomials with large coefficients over the rational function field 𝔽q[t]. Some interesting questions answered as special cases of our results include the density of square-free polynomials in short intervals, and an asymptotic for the number of representations of a large polynomial N as a sum of a k-th power of a small polynomial and a square-free polynomial.
Let ${\mathcal{F}}_{g}^{\mathbf{N}}$ be the moduli space of polarized Nikulin surfaces $(Y,H)$ of genus $g$ and let ${\mathcal{P}}_{g}^{\mathbf{N}}$ be the moduli of triples $(Y,H,C)$, with $C\in |H|$ a smooth curve. We study the natural map $\unicode[STIX]{x1D712}_{g}:{\mathcal{P}}_{g}^{\mathbf{N}}\rightarrow {\mathcal{R}}_{g}$, where ${\mathcal{R}}_{g}$ is the moduli space of Prym curves of genus $g$. We prove that it is generically injective on every irreducible component, with a few exceptions in low genus. This gives a complete picture of the map $\unicode[STIX]{x1D712}_{g}$ and confirms some striking analogies between it and the Mukai map $m_{g}:{\mathcal{P}}_{g}\rightarrow {\mathcal{M}}_{g}$ for moduli of triples $(Y,H,C)$, where $(Y,H)$ is any genus $g$ polarized $K3$ surface. The proof is by degeneration to boundary points of a partial compactification of ${\mathcal{F}}_{g}^{\mathbf{N}}$. These represent the union of two surfaces with four even nodes and effective anticanonical class, which we call half Nikulin surfaces. The use of this degeneration is new with respect to previous techniques.
Let X be a non-singular irreducible complex projective curve of genus g ≥ 2. The concept of stability of coherent systems over X depends on a positive real parameter α, given then a (finite) family of moduli spaces of coherent systems. We use (t, ℓ)-stability to prove the existence of coherent systems over X that are α-stable for all allowed α > 0.
We prove the existence of a smooth and non-degenerate curve $X\subset \mathbb{P}^{n}$, $n\geqslant 8$, with $\deg (X)=d$, $p_{a}(X)=g$, $h^{1}(N_{X}(-1))=0$, and general moduli for all $(d,g,n)$ such that $d\geqslant (n-3)\lceil g/2\rceil +n+3$. It was proved by C. Walter that, for $n\geqslant 4$, the inequality $2d\geqslant (n-3)g+4$ is a necessary condition for the existence of a curve with $h^{1}(N_{X}(-1))=0$.
Over the moduli space of smooth curves, the double ramification cycle can be defined by pulling back the unit section of the universal jacobian along the Abel–Jacobi map. This breaks down over the boundary since the Abel–Jacobi map fails to extend. We construct a ‘universal’ resolution of the Abel–Jacobi map, and thereby extend the double ramification cycle to the whole of the moduli of stable curves. In the non-twisted case, we show that our extension coincides with the cycle constructed by Li, Graber, Vakil via a virtual fundamental class on a space of rubber maps.
We prove constancy of Newton polygons of all convergent $F$-isocrystals on Abelian varieties over finite fields. Applying the constancy, we prove the isotriviality of proper smooth families of curves over Abelian varieties. More generally, we prove the isotriviality over projective smooth varieties on which any convergent $F$-isocrystal has constant Newton polygons.
We give a bound on the primes dividing the denominators of invariants of Picard curves of genus 3 with complex multiplication. Unlike earlier bounds in genus 2 and 3, our bound is based, not on bad reduction of curves, but on a very explicit type of good reduction. This approach simultaneously yields a simplification of the proof and much sharper bounds. In fact, unlike all previous bounds for genus 3, our bound is sharp enough for use in explicit constructions of Picard curves.
We study the dynamics of a singular holomorphic vector field at $(\mathbb{C}^{2},0)$. Using the associated flow and its pullback to the blow-up manifold, we provide invariants relating the vector field, a non-invariant analytic branch of curve, and the deformation of this branch by the flow. This leads us to study the conjugacy classes of singular branches under the action of holomorphic flows. In particular, we show that there exists an analytic class that is not complete, meaning that there are two elements of the class that are not analytically conjugated by a local biholomorphism embedded in a one-parameter flow. Our techniques are new and offer an approach dual to the one used classically to study singularities of holomorphic vector fields.
Let $X$ be a smooth projective Fano variety over the complex numbers. We study the moduli space of rational curves on $X$ using the perspective of Manin’s conjecture. In particular, we bound the dimension and number of components of spaces of rational curves on $X$. We propose a geometric Manin’s conjecture predicting the growth rate of a counting function associated to the irreducible components of these moduli spaces.
We generalize the Cohen–Lenstra heuristics over function fields to étale group schemes $G$ (with the classical case of abelian groups corresponding to constant group schemes). By using the results of Ellenberg–Venkatesh–Westerland, we make progress towards the proof of these heuristics. Moreover, by keeping track of the image of the Weil-pairing as an element of $\wedge ^{2}G(1)$, we formulate more refined heuristics which nicely explain the deviation from the usual Cohen–Lenstra heuristics for abelian $\ell$-groups in cases where $\ell \mid q-1$; the nature of this failure was suggested already in the works of Malle, Garton, Ellenberg–Venkatesh–Westerland, and others. On the purely large random matrix side, we provide a natural model which has the correct moments, and we conjecture that these moments uniquely determine a limiting probability measure.
F. Cukierman asked whether or not for every smooth real plane curve $X\subset \mathbb{P}^{2}$ of even degree $d\geqslant 2$ there exists a real line $L\subset \mathbb{P}^{2}$ such $X\cap L$ has no real points. We show that the answer is yes if $d=2$ or 4 and no if $n\geqslant 6$.
We prove that if $C$ is a reflexive smooth plane curve of degree $d$ defined over a finite field $\mathbb{F}_{q}$ with $d\leqslant q+1$, then there is an $\mathbb{F}_{q}$-line $L$ that intersects $C$ transversely. We also prove the same result for non-reflexive curves of degree $p+1$ and $2p+1$ when $q=p^{r}$.
We prove that the monodromy group of a reduced irreducible square system of general polynomial equations equals the symmetric group. This is a natural first step towards the Galois theory of general systems of polynomial equations, because arbitrary systems split into reduced irreducible ones upon monomial changes of variables. In particular, our result proves the multivariate version of the Abel–Ruffini theorem: the classification of general systems of equations solvable by radicals reduces to the classification of lattice polytopes of mixed volume 4 (which we prove to be finite in every dimension). We also notice that the monodromy of every general system of equations is either symmetric or imprimitive. The proof is based on a new result of independent importance regarding dual defectiveness of systems of equations: the discriminant of a reduced irreducible square system of general polynomial equations is a hypersurface unless the system is linear up to a monomial change of variables.
Let $X$ be a smooth projective curve of genus $g\geq 2$ over an algebraically closed field $k$ of characteristic $p>0$. We show that for any integers $r$ and $d$ with $0<r<p$, there exists a maximally Frobenius destabilised stable vector bundle of rank $r$ and degree $d$ on $X$ if and only if $r\mid d$.
Let $\unicode[STIX]{x1D719}$ be a post-critically finite branched covering of a two-sphere. By work of Koch, the Thurston pullback map induced by $\unicode[STIX]{x1D719}$ on Teichmüller space descends to a multivalued self-map—a Hurwitz correspondence ${\mathcal{H}}_{\unicode[STIX]{x1D719}}$—of the moduli space ${\mathcal{M}}_{0,\mathbf{P}}$. We study the dynamics of Hurwitz correspondences via numerical invariants called dynamical degrees. We show that the sequence of dynamical degrees of ${\mathcal{H}}_{\unicode[STIX]{x1D719}}$ is always non-increasing and that the behavior of this sequence is constrained by the behavior of $\unicode[STIX]{x1D719}$ at and near points of its post-critical set.
This paper contains two results on Hodge loci in $\mathsf{M}_{g}$. The first concerns fibrations over curves with a non-trivial flat part in the Fujita decomposition. If local Torelli theorem holds for the fibers and the fibration is non-trivial, an appropriate exterior power of the cohomology of the fiber admits a Hodge substructure. In the case of curves it follows that the moduli image of the fiber is contained in a proper Hodge locus. The second result deals with divisors in $\mathsf{M}_{g}$. It is proved that the image under the period map of a divisor in $\mathsf{M}_{g}$ is not contained in a proper totally geodesic subvariety of $\mathsf{A}_{g}$. It follows that a Hodge locus in $\mathsf{M}_{g}$ has codimension at least 2.