We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove that the direct image complex for the $D$-twisted $\text{SL}_{n}$ Hitchin fibration is determined by its restriction to the elliptic locus, where the spectral curves are integral. The analogous result for $\text{GL}_{n}$ is due to Chaudouard and Laumon. Along the way, we prove that the Tate module of the relative Prym group scheme is polarizable, and we also prove $\unicode[STIX]{x1D6FF}$-regularity results for some auxiliary weak abelian fibrations.
Inspired by methods of N. P. Smart, we describe an algorithm to determine all Picard curves over $\mathbb{Q}$ with good reduction away from 3, up to $\mathbb{Q}$-isomorphism. A correspondence between the isomorphism classes of such curves and certain quintic binary forms possessing a rational linear factor is established. An exhaustive list of integral models is determined and an application to a question of Ihara is discussed.
We prove the Green–Lazarsfeld secant conjecture [Green and Lazarsfeld, On the projective normality of complete linear series on an algebraic curve, Invent. Math. 83 (1986), 73–90; Conjecture (3.4)] for extremal line bundles on curves of arbitrary gonality, subject to explicit genericity assumptions.
For every integer $k\geqslant 3$ we construct a $k$-gonal curve $C$ along with a very ample divisor of degree $2g+k-1$ (where $g$ is the genus of $C$) to which the vanishing statement from the Green–Lazarsfeld gonality conjecture does not apply.
We prove that the generalized Hilbert–Kunz function of a graded module $M$ over a two-dimensional standard graded normal $K$-domain over an algebraically closed field $K$ of prime characteristic $p$ has the form $gHK(M,q)=e_{gHK}(M)q^{2}+\unicode[STIX]{x1D6FE}(q)$, with rational generalized Hilbert–Kunz multiplicity $e_{gHK}(M)$ and a bounded function $\unicode[STIX]{x1D6FE}(q)$. Moreover, we prove that if $R$ is a $\mathbb{Z}$-algebra, the limit for $p\rightarrow +\infty$ of the generalized Hilbert–Kunz multiplicity $e_{gHK}^{R_{p}}(M_{p})$ over the fibers $R_{p}$ exists, and it is a rational number.
In this paper we discuss a relationship between the spectral asymmetry and the surface symmetry. More precisely, we show that for every automorphism of a Hurwitz surface with the automorphism group $\text{PSL}(2,\mathbb{F}_{q})$, the $\unicode[STIX]{x1D702}$-invariant of the corresponding mapping torus vanishes if $q$ is sufficiently large.
The paper studies a relation between fundamental group of the complement to a plane singular curve and the orbifold pencils containing it. The main tool is the use of Albanese varieties of cyclic covers ramified along such curves. Our results give sufficient conditions for a plane singular curve to belong to an orbifold pencil, that is, a pencil of plane curves with multiple fibers inducing a map onto an orbifold curve whose orbifold fundamental group is nontrivial. We construct an example of a cyclic cover of the projective plane which is an abelian surface isomorphic to the Jacobian of a curve of genus 2 illustrating the extent to which these conditions are necessary.
Consider two ordinary elliptic curves $E,E^{\prime }$ defined over a finite field $\mathbb{F}_{q}$, and suppose that there exists an isogeny $\unicode[STIX]{x1D713}$ between $E$ and $E^{\prime }$. We propose an algorithm that determines $\unicode[STIX]{x1D713}$ from the knowledge of $E$, $E^{\prime }$ and of its degree $r$, by using the structure of the $\ell$-torsion of the curves (where $\ell$ is a prime different from the characteristic $p$ of the base field). Our approach is inspired by a previous algorithm due to Couveignes, which involved computations using the $p$-torsion on the curves. The most refined version of that algorithm, due to De Feo, has a complexity of $\tilde{O} (r^{2})p^{O(1)}$ base field operations. On the other hand, the cost of our algorithm is $\tilde{O} (r^{2})\log (q)^{O(1)}$, for a large class of inputs; this makes it an interesting alternative for the medium- and large-characteristic cases.
We describe the construction of a database of genus-$2$ curves of small discriminant that includes geometric and arithmetic invariants of each curve, its Jacobian, and the associated $L$-function. This data has been incorporated into the $L$-Functions and Modular Forms Database (LMFDB).
We present JKL-ECM, an implementation of the elliptic curve method of integer factorization which uses certain twisted Hessian curves in a family studied by Jeon, Kim and Lee. This implementation takes advantage of torsion subgroup injection for families of elliptic curves over a quartic number field, in addition to the ‘small parameter’ speedup. We produced thousands of curves with torsion $\mathbb{Z}/6\mathbb{Z}\oplus \mathbb{Z}/6\mathbb{Z}$ and small parameters in twisted Hessian form, which admit curve arithmetic that is ‘almost’ as fast as that of twisted Edwards form. This allows JKL-ECM to compete with GMP-ECM for finding large prime factors. Also, JKL-ECM, based on GMP, accepts integers of arbitrary size. We classify the torsion subgroups of Hessian curves over $\mathbb{Q}$ and further examine torsion properties of the curves described by Jeon, Kim and Lee. In addition, the high-performance curves with torsion $\mathbb{Z}/2\mathbb{Z}\oplus \mathbb{Z}/8\mathbb{Z}$ of Bernstein et al. are completely recovered by the $\mathbb{Z}/4\mathbb{Z}\oplus \mathbb{Z}/8\mathbb{Z}$ family of Jeon, Kim and Lee, and hundreds more curves are produced besides, all with small parameters and base points.
We outline an algorithm to compute $\unicode[STIX]{x1D703}(z,\unicode[STIX]{x1D70F})$ in genus two in quasi-linear time, borrowing ideas from the algorithm for theta constants and the one for $\unicode[STIX]{x1D703}(z,\unicode[STIX]{x1D70F})$ in genus one. Our implementation shows a large speed-up for precisions as low as a few thousand decimal digits. We also lay out a strategy to generalize this algorithm to genus $g$.
Given a sextic CM field $K$, we give an explicit method for finding all genus-$3$ hyperelliptic curves defined over $\mathbb{C}$ whose Jacobians are simple and have complex multiplication by the maximal order of this field, via an approximation of their Rosenhain invariants. Building on the work of Weng [J. Ramanujan Math. Soc. 16 (2001) no. 4, 339–372], we give an algorithm which works in complete generality, for any CM sextic field $K$, and computes minimal polynomials of the Rosenhain invariants for any period matrix of the Jacobian. This algorithm can be used to generate genus-3 hyperelliptic curves over a finite field $\mathbb{F}_{p}$ with a given zeta function by finding roots of the Rosenhain minimal polynomials modulo $p$.
We compute equations for real multiplication on the divisor classes of genus-2 curves via algebraic correspondences. We do so by implementing van Wamelen’s method for computing equations for endomorphisms of Jacobians on examples drawn from the algebraic models for Hilbert modular surfaces computed by Elkies and Kumar. We also compute a correspondence over the universal family for the Hilbert modular surface of discriminant $5$ and use our equations to prove a conjecture of A. Wright on dynamics over the moduli space of Riemann surfaces.
Let $C$ be a smooth, separated and geometrically connected curve over a finitely generated field $k$ of characteristic $p\geqslant 0$, $\unicode[STIX]{x1D702}$ the generic point of $C$ and $\unicode[STIX]{x1D70B}_{1}(C)$ its étale fundamental group. Let $f:X\rightarrow C$ be a smooth proper morphism, and $i\geqslant 0$, $j$ integers. To the family of continuous $\mathbb{F}_{\ell }$-linear representations $\unicode[STIX]{x1D70B}_{1}(C)\rightarrow \text{GL}(R^{i}f_{\ast }\mathbb{F}_{\ell }(j)_{\overline{\unicode[STIX]{x1D702}}})$ (where $\ell$ runs over primes $\neq p$), one can attach families of abstract modular curves $C_{0}(\ell )$ and $C_{1}(\ell )$, which, in this setting, are the analogues of the usual modular curves $Y_{0}(\ell )$ and $Y_{1}(\ell )$. If $i\not =2j$, it is conjectured that the geometric and arithmetic gonalities of these abstract modular curves go to infinity with $\ell$ (for the geometric gonality, under a certain necessary condition). We prove the conjecture for the arithmetic gonality of the abstract modular curves $C_{1}(\ell )$. We also obtain partial results for the growth of the geometric gonality of $C_{0}(\ell )$ and $C_{1}(\ell )$. The common strategy underlying these results consists in reducing by specialization theory to the case where the base field $k$ is finite in order to apply techniques of counting rational points.
We prove that the tautological ring of ${\mathcal{M}}_{2,n}^{\mathsf{ct}}$, the moduli space of $n$-pointed genus two curves of compact type, does not have Poincaré duality for any $n\geqslant 8$. This result is obtained via a more general study of the cohomology groups of ${\mathcal{M}}_{2,n}^{\mathsf{ct}}$. We explain how the cohomology can be decomposed into pieces corresponding to different local systems and how the tautological cohomology can be identified within this decomposition. Our results allow the computation of $H^{k}({\mathcal{M}}_{2,n}^{\mathsf{ct}})$ for any $k$ and $n$ considered both as $\mathbb{S}_{n}$-representation and as mixed Hodge structure/$\ell$-adic Galois representation considered up to semi-simplification. A consequence of our results is also that all even cohomology of $\overline{{\mathcal{M}}}_{2,n}$ is tautological for $n<20$, and that the tautological ring of $\overline{{\mathcal{M}}}_{2,n}$ fails to have Poincaré duality for all $n\geqslant 20$. This improves and simplifies results of the author and Orsola Tommasi.
We study moduli spaces of rational weighted stable tropical curves, and their connections with Hassett spaces. Given a vector $w$ of weights, the moduli space of tropical $w$-stable curves can be given the structure of a balanced fan if and only if $w$ has only heavy and light entries. In this case, the tropical moduli space can be expressed as the Bergman fan of an explicit graphic matroid. The tropical moduli space can be realized as a geometric tropicalization, and as a Berkovich skeleton, its algebraic counterpart. This builds on previous work of Tevelev, Gibney and Maclagan, and Abramovich, Caporaso and Payne. Finally, we construct the moduli spaces of heavy/light weighted tropical curves as fibre products of unweighted spaces, and explore parallels with the algebraic world.
The moduli space of canonical divisors (with prescribed zeros and poles) on nonsingular curves is not compact since the curve may degenerate. We define a proper moduli space of twisted canonical divisors in $\overline{{\mathcal{M}}}_{g,n}$ which includes the space of canonical divisors as an open subset. The theory leads to geometric/combinatorial constraints on the closures of the moduli spaces of canonical divisors.
In case the differentials have at least one pole (the strictly meromorphic case), the moduli spaces of twisted canonical divisors on genus $g$ curves are of pure codimension $g$ in $\overline{{\mathcal{M}}}_{g,n}$. In addition to the closure of the canonical divisors on nonsingular curves, the moduli spaces have virtual components. In the Appendix A, a complete proposal relating the sum of the fundamental classes of all components (with intrinsic multiplicities) to a formula of Pixton is proposed. The result is a precise and explicit conjecture in the tautological ring for the weighted fundamental class of the moduli spaces of twisted canonical divisors.
As a consequence of the conjecture, the classes of the closures of the moduli spaces of canonical divisors on nonsingular curves are determined (both in the holomorphic and meromorphic cases).
We introduce a common generalization of essentially all known methods for explicit computation of Selmer groups, which are used to bound the ranks of abelian varieties over global fields. We also simplify and extend the proofs relating what is computed to the cohomologically defined Selmer groups. Selmer group computations have been practical for many Jacobians of curves over $\mathbb{Q}$ of genus up to 2 since the 1990s, but our approach is the first to be practical for general curves of genus 3. We show that our approach succeeds on some genus 3 examples defined by polynomials with small coefficients.