We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We give the complete list of possible torsion subgroups of elliptic curves with complex multiplication over number fields of degree 1–13. Additionally we describe the algorithm used to compute these torsion subgroups and its implementation.
We exhibit a numerical method to compute three-point branched covers of the complex projective line. We develop algorithms for working explicitly with Fuchsian triangle groups and their finite-index subgroups, and we use these algorithms to compute power series expansions of modular forms on these groups.
In this paper we give a new formula for adding $2$-coverings and $3$-coverings of elliptic curves that avoids the need for any field extensions. We show that the $6$-coverings obtained can be represented by pairs of cubic forms. We then prove a theorem on the existence of such models with integer coefficients and the same discriminant as a minimal model for the Jacobian elliptic curve. This work has applications to finding rational points of large height on elliptic curves.
We study new families of curves that are suitable for efficiently parametrizing their moduli spaces. We explicitly construct such families for smooth plane quartics in order to determine unique representatives for the isomorphism classes of smooth plane quartics over finite fields. In this way, we can visualize the distributions of their traces of Frobenius. This leads to new observations on fluctuations with respect to the limiting symmetry imposed by the theory of Katz and Sarnak.
Let $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}S$ be a complex smooth projective surface and $L$ be a line bundle on $S$. For any given collection of isolated topological or analytic singularity types, we show the number of curves in the linear system $|L|$ with prescribed singularities is a universal polynomial of Chern numbers of $L$ and $S$, assuming $L$ is sufficiently ample. More generally, we show for vector bundles of any rank and smooth varieties of any dimension, similar universal polynomials also exist and equal the number of singular subvarieties cutting out by sections of the vector bundle. This work is a generalization of Göttsche’s conjecture.
A Brahmagupta quadrilateral is a cyclic quadrilateral whose sides, diagonals and area are all integer values. In this article, we characterise the notions of Brahmagupta, introduced by K. R. S. Sastry [‘Brahmagupta quadrilaterals’, Forum Geom.2 (2002), 167–173], by means of elliptic curves. Motivated by these characterisations, we use Brahmagupta quadrilaterals to construct infinite families of elliptic curves with torsion group $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathbb{Z}/2\mathbb{Z}\times \mathbb{Z}/2\mathbb{Z}$ having ranks (at least) four, five and six. Furthermore, by specialising we give examples from these families of specific curves with rank nine.
Let $Q(N;q,a)$ be the number of squares in the arithmetic progression $qn+a$, for $n=0$,$1,\ldots,N-1$, and let $Q(N)$ be the maximum of $Q(N;q,a)$ over all non-trivial arithmetic progressions $qn + a$. Rudin’s conjecture claims that $Q(N)=O(\sqrt{N})$, and in its stronger form that $Q(N)=Q(N;24,1)$ if $N\ge 6$. We prove the conjecture above for $6\le N\le 52$. We even prove that the arithmetic progression $24n+1$ is the only one, up to equivalence, that contains $Q(N)$ squares for the values of $N$ such that $Q(N)$ increases, for $7\le N\le 52$ ($N=8,13,16,23,27,36,41$ and $52$).
We consider the natural $A_{\infty }$-structure on the $\mathrm{Ext}$-algebra $\mathrm{Ext}^*(G,G)$ associated with the coherent sheaf $G=\mathcal{O}_C\oplus \mathcal{O}_{p_1}\oplus \cdots \oplus \mathcal{O}_{p_n}$ on a smooth projective curve $C$, where $p_1,\ldots,p_n\in C$ are distinct points. We study the homotopy class of the product $m_3$. Assuming that $h^0(p_1+\cdots +p_n)=1$, we prove that $m_3$ is homotopic to zero if and only if $C$ is hyperelliptic and the points $p_i$ are Weierstrass points. In the latter case we show that $m_4$ is not homotopic to zero, provided the genus of $C$ is greater than $1$. In the case $n=g$ we prove that the $A_{\infty }$-structure is determined uniquely (up to homotopy) by the products $m_i$ with $i\le 6$. Also, in this case we study the rational map $\mathcal{M}_{g,g}\to \mathbb{A}^{g^2-2g}$ associated with the homotopy class of $m_3$. We prove that for $g\ge 6$ it is birational onto its image, while for $g\le 5$ it is dominant. We also give an interpretation of this map in terms of tangents to $C$ in the canonical embedding and in the projective embedding given by the linear series $|2(p_1+\cdots +p_g)|$.
We prove that if $y''=f(y,y',t,\alpha ,\beta ,\ldots)$ is a generic Painlevé equation from among the classes II, IV and V, and if $y_1,\ldots,y_n$ are distinct solutions, then $\mathrm{tr.deg}(\mathbb{C}(t)(y_1,y'_1,\ldots,y_n,y'_n)/\mathbb{C}(t))=2n$. (This was proved by Nishioka for the single equation $P_{{\rm I}}$.) For generic Painlevé III and VI, we have a slightly weaker result: $\omega $-categoricity (in the sense of model theory) of the solution space, as described below. The results confirm old beliefs about the Painlevé transcendents.
We give a new, geometric proof of the section conjecture for fixed points of finite group actions on projective curves of positive genus defined over the field of complex numbers, as well as its natural nilpotent analogue. As a part of our investigations we give an explicit description of the abelianised section map for groups of prime order in this setting. We also show a version of the $2$-nilpotent section conjecture.
In this work, we describe a method to construct the generic braid monodromy of the
preimage of a curve by a Kummer cover. This method is interesting since it combines
two techniques, namely, the construction of a highly non-generic braid monodromy and
a systematic method to go from a non-generic to a generic braid monodromy. The latter
process, called generification, is independent from Kummer covers,
and it can be applied in more general circumstances since non-generic braid
monodromies appear more naturally and are oftentimes much easier to compute. Explicit
examples are computed using these techniques.
We show that a standard conic bundle over a minimal rational surface is rational and its Jacobian splits as the direct sum of Jacobians of curves if and only if its derived category admits a semiorthogonal decomposition by exceptional objects and the derived categories of those curves. Moreover, such a decomposition gives the splitting of the intermediate Jacobian also when the surface is not minimal.
The purpose of this paper is twofold. We present first a vanishing theorem for families of linear series with base ideal being a fat points ideal. We then apply this result in order to give a partial proof of a conjecture raised by Bocci, Harbourne and Huneke concerning containment relations between ordinary and symbolic powers of planar point ideals.
Let us consider the locus in the moduli space of curves of genus $2k$ defined by curves with a pencil of degree $k$. Since the Brill–Noether number is equal to $- 2$, such a locus has codimension two. Using the method of test surfaces, we compute the class of its closure in the moduli space of stable curves.
This paper studies ‘pro-excision’ for the $K$-theory of one-dimensional, usually semi-local, rings and its
various applications. In particular, we prove Geller’s conjecture for equal
characteristic rings over a perfect field of finite characteristic, give results
towards Geller’s conjecture in mixed characteristic, and we establish various
finiteness results for the $K$-groups of singularities, covering both orders in number fields and
singular curves over finite fields.
Let $k$ be a locally compact complete field with respect to a discrete valuation $v$. Let $ \mathcal{O} $ be the valuation ring, $\mathfrak{m}$ the maximal ideal and $F(x)\in \mathcal{O} [x] $ a monic separable polynomial of degree $n$. Let $\delta = v(\mathrm{Disc} (F))$. The Montes algorithm computes an OM factorization of $F$. The single-factor lifting algorithm derives from this data a factorization of $F(\mathrm{mod~} {\mathfrak{m}}^{\nu } )$, for a prescribed precision $\nu $. In this paper we find a new estimate for the complexity of the Montes algorithm, leading to an estimation of $O({n}^{2+ \epsilon } + {n}^{1+ \epsilon } {\delta }^{2+ \epsilon } + {n}^{2} {\nu }^{1+ \epsilon } )$ word operations for the complexity of the computation of a factorization of $F(\mathrm{mod~} {\mathfrak{m}}^{\nu } )$, assuming that the residue field of $k$ is small.
We prove that the quotient by ${\mathrm{SL} }_{2} \times {\mathrm{SL} }_{2} $ of the space of bidegree $(a, b)$ curves on ${ \mathbb{P} }^{1} \times { \mathbb{P} }^{1} $ is rational when $ab$ is even and $a\not = b$.
We study natural families of $\bar {\partial } $-operators on the moduli space of stable parabolic vector bundles. Applying a families index theorem for hyperbolic cusp operators from our previous work, we find formulae for the Chern characters of the associated index bundles. The contributions from the cusps are explicitly expressed in terms of the Chern characters of natural vector bundles related to the parabolic structure. We show that our result implies formulae for the Chern classes of the associated determinant bundles consistent with a result of Takhtajan and Zograf.