We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Using the theory of ${\mathbf {FS}} {^\mathrm {op}}$ modules, we study the asymptotic behavior of the homology of ${\overline {\mathcal {M}}_{g,n}}$, the Deligne–Mumford compactification of the moduli space of curves, for $n\gg 0$. An ${\mathbf {FS}} {^\mathrm {op}}$ module is a contravariant functor from the category of finite sets and surjections to vector spaces. Via copies that glue on marked projective lines, we give the homology of ${\overline {\mathcal {M}}_{g,n}}$ the structure of an ${\mathbf {FS}} {^\mathrm {op}}$ module and bound its degree of generation. As a consequence, we prove that the generating function $\sum _{n} \dim (H_i({\overline {\mathcal {M}}_{g,n}})) t^n$ is rational, and its denominator has roots in the set $\{1, 1/2, \ldots, 1/p(g,i)\},$ where $p(g,i)$ is a polynomial of order $O(g^2 i^2)$. We also obtain restrictions on the decomposition of the homology of ${\overline {\mathcal {M}}_{g,n}}$ into irreducible $\mathbf {S}_n$ representations.
We prove that the maximal number of conics in a smooth sextic
$K3$
-surface
$X\subset \mathbb {P}^4$
is 285, whereas the maximal number of real conics in a real sextic is 261. In both extremal configurations, all conics are irreducible.
In this paper, we prove a decomposition result for the Chow groups of projectivizations of coherent sheaves of homological dimension
$\le 1$
. In this process, we establish the decomposition of Chow groups for the cases of the Cayley trick and standard flips. Moreover, we apply these results to study the Chow groups of symmetric powers of curves, nested Hilbert schemes of surfaces, and the varieties resolving Voisin maps for cubic fourfolds.
We give a formula for the cohomological invariants of a root stack, which we apply to compute the cohomological invariants and the Brauer group of the compactification of the stacks of hyperelliptic curves given by admissible double coverings.
We study the fundamental groups of the complements to curves on simply connected surfaces, admitting non-abelian free groups as their quotients. We show that given a subset of the Néron–Severi group of such a surface, there are only finitely many classes of equisingular isotopy of curves with irreducible components belonging to this subset for which the fundamental groups of the complement admit surjections onto a free group of a given sufficiently large rank. Examples of subsets of the Néron–Severi group are given with infinitely many isotopy classes of curves with irreducible components from such a subset and fundamental groups of the complements admitting surjections on a free group only of a small rank.
The ergodic properties of two uncoupled oscillators, one horizontal and one vertical, residing in a class of non-rectangular star-shaped polygons with only vertical and horizontal boundaries and impacting elastically from its boundaries are studied. We prove that the iso-energy level sets topology changes non-trivially; the flow on level sets is always conjugated to a translation flow on a translation surface, yet, for some segments of partial energies the genus of the surface is strictly greater than
$1$
. When at least one of the oscillators is unharmonic, or when both are harmonic and non-resonant, we prove that for almost all partial energies, including the impacting ones, the flow on level sets is uniquely ergodic. When both oscillators are harmonic and resonant, we prove that there exist intervals of partial energies on which periodic ribbons and additional ergodic components coexist. We prove that for almost all partial energies in such segments the motion is uniquely ergodic on the part of the level set that is not occupied by the periodic ribbons. This implies that ergodic averages project to piecewise smooth weighted averages in the configuration space.
Using the theory of cohomological invariants for algebraic stacks, we compute the Brauer group of the moduli stack of hyperelliptic curves ${\mathcal {H}}_g$ over any field of characteristic $0$. In positive characteristic, we compute the part of the Brauer group whose order is prime to the characteristic of the base field.
We prove that a formula for the ‘pluricanonical’ double ramification cycle proposed by Janda, Pandharipande, Pixton, Zvonkine, and the second-named author is in fact the class of a cycle constructed geometrically by the first-named author. Our proof proceeds by a detailed explicit analysis of the deformation theory of the double ramification cycle, both to first and to higher order.
We construct natural operators connecting the cohomology of the moduli spaces of stable Higgs bundles with different ranks and genera which, after numerical specialisation, recover the topological mirror symmetry conjecture of Hausel and Thaddeus concerning $\mathrm {SL}_n$- and $\mathrm {PGL}_n$-Higgs bundles. This provides a complete description of the cohomology of the moduli space of stable $\mathrm {SL}_n$-Higgs bundles in terms of the tautological classes, and gives a new proof of the Hausel–Thaddeus conjecture, which was also proven recently by Gröchenig, Wyss and Ziegler via p-adic integration.
Our method is to relate the decomposition theorem for the Hitchin fibration, using vanishing cycle functors, to the decomposition theorem for the twisted Hitchin fibration, whose supports are simpler.
Let
$E/\mathbb {Q}$
be an elliptic curve. For a prime p of good reduction, let
$r(E,p)$
be the smallest non-negative integer that gives the x-coordinate of a point of maximal order in the group
$E(\mathbb {F}_p)$
. We prove unconditionally that
$r(E,p)> 0.72\log \log p$
for infinitely many p, and
$r(E,p)> 0.36 \log p$
under the assumption of the Generalized Riemann Hypothesis. These can be viewed as elliptic curve analogues of classical lower bounds on the least primitive root of a prime.
Let π : X → C be a fibration with integral fibers over a curve C and consider a polarization H on the surface X. Let E be a stable vector bundle of rank 2 on C. We prove that the pullback π*(E) is a H-stable bundle over X. This result allows us to relate the corresponding moduli spaces of stable bundles $${{\mathcal M}_C}(2,d)$$ and $${{\mathcal M}_{X,H}}(2,df,0)$$ through an injective morphism. We study the induced morphism at the level of Brill–Noether loci to construct examples of Brill–Noether loci on fibered surfaces. Results concerning the emptiness of Brill–Noether loci follow as a consequence of a generalization of Clifford’s Theorem for rank two bundles on surfaces.
In 2006, Kenyon and Okounkov Kenyon and Okounkov [12] computed the moduli space of Harnack curves of degree d in ${\mathbb {C}\mathbb {P}}^2$. We generalise their construction to any projective toric surface and show that the moduli space ${\mathcal {H}_\Delta }$ of Harnack curves with Newton polygon $\Delta $ is diffeomorphic to ${\mathbb {R}}^{m-3}\times {\mathbb {R}}_{\geq 0}^{n+g-m}$, where $\Delta $ has m edges, g interior lattice points and n boundary lattice points. This solves a conjecture of Crétois and Lang. The main result uses abstract tropical curves to construct a compactification of this moduli space where additional points correspond to collections of curves that can be patchworked together to produce a curve in ${\mathcal {H}_\Delta }$. This compactification has a natural stratification with the same poset as the secondary polytope of $\Delta $.
We give the first examples of derived equivalences between varieties defined over non-closed fields where one has a rational point and the other does not. We begin with torsors over Jacobians of curves over $\mathbb {Q}$ and $\mathbb {F}_q(t)$, and conclude with a pair of hyperkähler 4-folds over $\mathbb {Q}$. The latter is independently interesting as a new example of a transcendental Brauer–Manin obstruction to the Hasse principle. The source code for the various computations is supplied as supplementary material with the online version of this article.
The aim of this paper is to study all the natural first steps of the minimal model program for the moduli space of stable pointed curves. We prove that they admit a modular interpretation, and we study their geometric properties. As a particular case, we recover the first few Hassett–Keel log canonical models. As a by-product, we produce many birational morphisms from the moduli space of stable pointed curves to alternative modular projective compactifications of the moduli space of pointed curves.
We initiate and develop a framework to handle the specialisation morphism as a filtered morphism for the perverse, and for the perverse Leray filtration, on the cohomology with constructible coefficients of varieties and morphisms parameterised by a curve. As an application, we use this framework to carry out a detailed study of filtered specialisation for the Hitchin morphisms associated with the compactification of Dolbeault moduli spaces in [de 2018].
We study smoothing of pencils of curves on surfaces with normal crossings. As a consequence we show that the canonical divisor of $\overline {\mathcal {M}}_{g,n}$ is not pseudoeffective in some range, implying that $\overline {\mathcal {M}}_{12,6}$, $\overline {\mathcal {M}}_{12,7}$, $\overline {\mathcal {M}}_{13,4}$ and $\overline {\mathcal {M}}_{14,3}$ are uniruled. We provide upper bounds for the Kodaira dimension of $\overline {\mathcal {M}}_{12,8}$ and $\overline {\mathcal {M}}_{16}$. We also show that the moduli space of $(4g+5)$-pointed hyperelliptic curves $\overline {\mathcal {H}}_{g,4g+5}$ is uniruled. Together with a recent result of Schwarz, this concludes the classification of moduli of pointed hyperelliptic curves with negative Kodaira dimension.
We study the cohomology of Jacobians and Hilbert schemes of points on reduced and locally planar curves, which are however allowed to be singular and reducible. We show that the cohomologies of all Hilbert schemes of all subcurves are encoded in the cohomologies of the fine compactified Jacobians of connected subcurves, via the perverse Leray filtration. We also prove, along the way, a result of independent interest, giving sufficient conditions for smoothness of the total space of the relative compactified Jacobian of a family of locally planar curves.
In this paper, we construct a natural probability measure on the space of real branched coverings from a real projective algebraic curve
$(X,c_X)$
to the projective line
$(\mathbb{C} \mathbb {P}^1,\textit{conj} )$
. We prove that the space of degree d real branched coverings having “many” real branched points (for example, more than
$\sqrt {d}^{1+\alpha }$
, for any
$\alpha>0$
) has exponentially small measure. In particular, maximal real branched coverings – that is, real branched coverings such that all the branched points are real – are exponentially rare.
The elliptic algebras in the title are connected graded
$\mathbb {C}$-algebras, denoted
$Q_{n,k}(E,\tau )$, depending on a pair of relatively prime integers
$n>k\ge 1$, an elliptic curve E and a point
$\tau \in E$. This paper examines a canonical homomorphism from
$Q_{n,k}(E,\tau )$ to the twisted homogeneous coordinate ring
$B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$ on the characteristic variety
$X_{n/k}$ for
$Q_{n,k}(E,\tau )$. When
$X_{n/k}$ is isomorphic to
$E^g$ or the symmetric power
$S^gE$, we show that the homomorphism
$Q_{n,k}(E,\tau ) \to B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$ is surjective, the relations for
$B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$ are generated in degrees
$\le 3$ and the noncommutative scheme
$\mathrm {Proj}_{nc}(Q_{n,k}(E,\tau ))$ has a closed subvariety that is isomorphic to
$E^g$ or
$S^gE$, respectively. When
$X_{n/k}=E^g$ and
$\tau =0$, the results about
$B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$ show that the morphism
$\Phi _{|\mathcal {L}_{n/k}|}:E^g \to \mathbb {P}^{n-1}$ embeds
$E^g$ as a projectively normal subvariety that is a scheme-theoretic intersection of quadric and cubic hypersurfaces.