To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate sections of the arithmetic fundamental group $\pi _1(X)$ where X is either a smooth affinoid p-adic curve, or a formal germ of a p-adic curve, and prove that they can be lifted (unconditionally) to sections of cuspidally abelian Galois groups. As a consequence, if X admits a compactification Y, and the exact sequence of $\pi _1(X)$splits, then $\text {index} (Y)=1$. We also exhibit a necessary and sufficient condition for a section of $\pi _1(X)$ to arise from a rational point of Y. One of the key ingredients in our investigation is the fact, we prove in this paper in case X is affinoid, that the Picard group of X is finite.
The problem of classifying elliptic curves over $\mathbb Q$ with a given discriminant has received much attention. The analogous problem for genus $2$ curves has only been tackled when the absolute discriminant is a power of $2$. In this article, we classify genus $2$ curves C defined over ${\mathbb Q}$ with at least two rational Weierstrass points and whose absolute discriminant is an odd prime. In fact, we show that such a curve C must be isomorphic to a specialization of one of finitely many $1$-parameter families of genus $2$ curves. In particular, we provide genus $2$ analogues to Neumann–Setzer families of elliptic curves over the rationals.
We investigate the equation $D=x^4-y^4$ in field extensions. As an application, for a prime number p, we find solutions to $p=x^4-y^4$ if $p\equiv 11$ (mod 16) and $p^3=x^4-y^4$ if $p\equiv 3$ (mod 16) in all cubic extensions of $\mathbb{Q}(i)$.
Hyperelliptic mapping class groups are defined either as the centralizers of hyperelliptic involutions inside mapping class groups of oriented surfaces of finite type or as the inverse images of these centralizers by the natural epimorphisms between mapping class groups of surfaces with marked points. We study these groups in a systematic way. An application of this theory is a counterexample to the genus $2$ case of a conjecture by Putman and Wieland on virtual linear representations of mapping class groups. In the last section, we study profinite completions of hyperelliptic mapping class groups: we extend the congruence subgroup property to the general class of hyperelliptic mapping class groups introduced above and then determine the centralizers of multitwists and of open subgroups in their profinite completions.
In this paper, we determine the number of general points through which a Brill–Noether curve of fixed degree and genus in any projective space can be passed.
Let $\mathfrak{A}$ be a finite abelian group. In this paper, we classify harmonic $\mathfrak{A}$-covers of a tropical curve $\Gamma$ (which allow dilation along edges and at vertices) in terms of the cohomology group of a suitably defined sheaf on $\Gamma$. We give a realisability criterion for harmonic $\mathfrak{A}$-covers by patching local monodromy data in an extended homology group on $\Gamma$. As an explicit example, we work out the case $\mathfrak{A}=\mathbb{Z}/p\mathbb{Z}$ and explain how realisability for such covers is related to the nowhere-zero flow problem from graph theory.
We prove that the nonvarying strata of abelian and quadratic differentials in low genus have trivial tautological rings and are affine varieties. We also prove that strata of k-differentials of infinite area are affine varieties for all k. Vanishing of homology in degree higher than the complex dimension follows as a consequence for these affine strata. Moreover we prove that the stratification of the Hodge bundle for abelian and quadratic differentials of finite area is extremal in the sense that merging two zeros in each stratum leads to an extremal effective divisor in the boundary. A common feature throughout these results is a relation of divisor classes in strata of differentials as well as its incarnation in Teichmüller dynamics.
For $\theta $ a small generic universal stability condition of degree $0$ and A a vector of integers adding up to $-k(2g-2+n)$, the spaces $\overline {\mathcal {M}}_{g,A}^\theta $ constructed in [AP21, HMP+22] are observed to lie inside the space $\textbf {Div}$ of [MW20], and their pullback under $\textbf {Rub} \to \textbf {Div}$ of loc. cit. to be smooth. This provides smooth and modular modifications $\widetilde {\mathcal {M}}_{g,A}^\theta $ of $\overline {\mathcal {M}}_{g,n}$ on which the logarithmic double ramification cycle can be calculated by several methods.
For a given genus $g \geq 1$, we give lower bounds for the maximal number of rational points on a smooth projective absolutely irreducible curve of genus g over $\mathbb{F}_q$. As a consequence of Katz–Sarnak theory, we first get for any given $g>0$, any $\varepsilon>0$ and all q large enough, the existence of a curve of genus g over $\mathbb{F}_q$ with at least $1+q+ (2g-\varepsilon) \sqrt{q}$ rational points. Then using sums of powers of traces of Frobenius of hyperelliptic curves, we get a lower bound of the form $1+q+1.71 \sqrt{q}$ valid for $g \geq 3$ and odd $q \geq 11$. Finally, explicit constructions of towers of curves improve this result: We show that the bound $1+q+4 \sqrt{q} -32$ is valid for all $g\ge 2$ and for all q.
We consider the moduli space of genus 4 curves endowed with a $g^1_3$ (which maps with degree 2 onto the moduli space of genus 4 curves). We prove that it defines a degree $\frac {1}{2}(3^{10}-1)$ cover of the nine-dimensional Deligne–Mostow ball quotient such that the natural divisors that live on that moduli space become totally geodesic (their normalizations are eight-dimensional ball quotients). This isomorphism differs from the one considered by S. Kondō, and its construction is perhaps more elementary, as it does not involve K3 surfaces and their Torelli theorem: the Deligne–Mostow ball quotient parametrizes certain cyclic covers of degree 6 of a projective line and we show how a level structure on such a cover produces a degree 3 cover of that line with the same discriminant, yielding a genus 4 curve endowed with a $g^1_3$.
We show that the derived category of a curve is embedded into the derived category of the moduli space of vector bundles on the curve of coprime rank and degree. We also generalize the semiorthogonal decomposition constructed by Narasimhan and Belmans-Mukhopadhyay. Finally, we produce a one-dimensional family of ACM bundles over the moduli space.
We study the spaces of twisted conformal blocks attached to a $\Gamma$-curve $\Sigma$ with marked $\Gamma$-orbits and an action of $\Gamma$ on a simple Lie algebra $\mathfrak {g}$, where $\Gamma$ is a finite group. We prove that if $\Gamma$ stabilizes a Borel subalgebra of $\mathfrak {g}$, then the propagation theorem and factorization theorem hold. We endow a flat projective connection on the sheaf of twisted conformal blocks attached to a smooth family of pointed $\Gamma$-curves; in particular, it is locally free. We also prove that the sheaf of twisted conformal blocks on the stable compactification of Hurwitz stack is locally free. Let $\mathscr {G}$ be the parahoric Bruhat–Tits group scheme on the quotient curve $\Sigma /\Gamma$ obtained via the $\Gamma$-invariance of Weil restriction associated to $\Sigma$ and the simply connected simple algebraic group $G$ with Lie algebra $\mathfrak {g}$. We prove that the space of twisted conformal blocks can be identified with the space of generalized theta functions on the moduli stack of quasi-parabolic $\mathscr {G}$-torsors on $\Sigma /\Gamma$ when the level $c$ is divisible by $|\Gamma |$ (establishing a conjecture due to Pappas and Rapoport).
In this work, we study the Humbert-Edge curves of type 5, defined as a complete intersection of four diagonal quadrics in ${\mathbb{P}}^5$. We characterize them using Kummer surfaces, and using the geometry of these surfaces, we construct some vanishing thetanulls on such curves. In addition, we describe an argument to give an isomorphism between the moduli space of Humbert-Edge curves of type 5 and the moduli space of hyperelliptic curves of genus 2, and we show how this argument can be generalized to state an isomorphism between the moduli space of hyperelliptic curves of genus $g=\frac{n-1}{2}$ and the moduli space of Humbert-Edge curves of type $n\geq 5$ where $n$ is an odd number.
We use the tropical geometry approach to compute absolute and relative enumerative invariants of complex surfaces which are $\mathbb {C} P^1$-bundles over an elliptic curve. We also show that the tropical multiplicity used to count curves can be refined by the standard Block–Göttsche refined multiplicity to give tropical refined invariants. We then give a concrete algorithm using floor diagrams to compute these invariants along with the associated interpretation as operators acting on some Fock space. The floor diagram algorithm allows one to prove the piecewise polynomiality of the relative invariants, and the quasi-modularity of their generating series.
It is argued that a nonsingular elliptic curve admits a natural or fundamental abelian heap structure uniquely determined by the curve itself. It is shown that the set of complex analytic or rational functions from a nonsingular elliptic curve to itself is a truss arising from endomorphisms of this heap.
We show that all large enough positive integral surgeries on algebraic knots bound a 4-manifold with a negative definite plumbing tree, which we describe explicitly. Then we apply the lattice embedding obstruction coming from Donaldson’s Theorem to classify the ones of the form $S^3_n(T(p_1,k_1p_1+1; p_2, k_2p_2\pm 1))$ that also bound rational homology 4-balls.
Let $(S,L)$ be a general polarised Enriques surface, with L not numerically 2-divisible. We prove the existence of regular components of all Severi varieties of irreducible nodal curves in the linear system $|L|$, that is, for any number of nodes $\delta =0, \ldots , p_a(L)-1$. This solves a classical open problem and gives a positive answer to a recent conjecture of Pandharipande–Schmitt, under the additional condition of non-2-divisibility.
Let k be a field of characteristic zero and let $\Omega_{A/k}$ be the universally finite differential module of a k-algebra A, which is the local ring of a closed point of an algebraic or algebroid curve over k. A notorious open problem, known as Berger’s Conjecture, predicts that A must be regular if $\Omega_{A/k}$ is torsion-free. In this paper, assuming the hypotheses of the conjecture and observing that the module ${\rm Hom}_A(\Omega_{A/k}, \Omega_{A/k})$ is then isomorphic to an ideal of A, say $\mathfrak{h}$, we show that A is regular whenever the ring $A/a\mathfrak{h}$ is Gorenstein for some parameter a (and conversely). In addition, we provide various characterizations for the regularity of A in the context of the conjecture.
We prove the integral Hodge conjecture for one-cycles on a principally polarized complex abelian variety whose minimal class is algebraic. In particular, the Jacobian of a smooth projective curve over the complex numbers satisfies the integral Hodge conjecture for one-cycles. The main ingredient is a lift of the Fourier transform to integral Chow groups. Similarly, we prove the integral Tate conjecture for one-cycles on the Jacobian of a smooth projective curve over the separable closure of a finitely generated field. Furthermore, abelian varieties satisfying such a conjecture are dense in their moduli space.
We study plane curves over finite fields whose tangent lines at smooth $\mathbb {F}_q$-points together cover all the points of $\mathbb {P}^2(\mathbb {F}_q)$.