We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this article, we study Galois points of plane curves and the extension of the corresponding Galois group to $\mathrm{Bir}(\mathbb{P}^2)$. We prove that if the Galois group has order at most $3$, it always extends to a subgroup of the Jonquières group associated with the point $P$. Conversely, with a degree of at least $4$, we prove that it is false. We provide an example of a Galois extension whose Galois group is extendable to Cremona transformations but not to a group of de Jonquières maps with respect to $P$. In addition, we also give an example of a Galois extension whose Galois group cannot be extended to Cremona transformations.
Let $\alpha \colon X \to Y$ be a finite cover of smooth curves. Beauville conjectured that the pushforward of a general vector bundle under $\alpha $ is semistable if the genus of Y is at least $1$ and stable if the genus of Y is at least $2$. We prove this conjecture if the map $\alpha $ is general in any component of the Hurwitz space of covers of an arbitrary smooth curve Y.
In this paper, we present a solution to the problem of the analytic classification of germs of plane curves with several irreducible components. Our algebraic approach follows precursive ideas of Oscar Zariski and as a subproduct allows us to recover some particular cases found in the literature.
We develop two methods for expressing the global index of the gradient of a 2 variable polynomial function $f$: in terms of the atypical fibres of $f$, and in terms of the clusters of Milnor arcs at infinity. These allow us to derive upper bounds for the global index, in particular refining the one that was found by Durfee in terms of the degree of $f$.
Let $C\; : \;y^2=f(x)$ be a hyperelliptic curve of genus $g\geq 1$, defined over a complete discretely valued field $K$, with ring of integers $O_K$. Under certain conditions on $C$, mild when residue characteristic is not $2$, we explicitly construct the minimal regular model with normal crossings $\mathcal{C}/O_K$ of $C$. In the same setting we determine a basis of integral differentials of $C$, that is an $O_K$-basis for the global sections of the relative dualising sheaf $\omega _{\mathcal{C}/O_K}$.
In the present paper, we study a new kind of anabelian phenomenon concerning the smooth pointed stable curves in positive characteristic. It shows that the topology of moduli spaces of curves can be understood from the viewpoint of anabelian geometry. We formulate some new anabelian-geometric conjectures concerning tame fundamental groups of curves over algebraically closed fields of characteristic $p>0$ from the point of view of moduli spaces. The conjectures are generalized versions of the Weak Isom-version of the Grothendieck conjecture for curves over algebraically closed fields of characteristic $p>0$ which was formulated by Tamagawa. Moreover, we prove that the conjectures hold for certain points lying in the moduli space of curves of genus $0$.
and let $\mathcal {M}_{g, m|n} \subset \overline {\mathcal {M}}_{g, m|n}$ be the locus parameterizing smooth, not necessarily distinctly marked curves. We give a change-of-variables formula which computes the generating function for $(S_m\times S_n)$-equivariant Hodge–Deligne polynomials of these spaces in terms of the generating functions for $S_{n}$-equivariant Hodge–Deligne polynomials of $\overline {\mathcal {M}}_{g,n}$ and $\mathcal {M}_{g,n}$.
In this note, we prove a formula for the cancellation exponent $k_{v,n}$ between division polynomials $\psi _n$ and $\phi _n$ associated with a sequence $\{nP\}_{n\in \mathbb {N}}$ of points on an elliptic curve $E$ defined over a discrete valuation field $K$. The formula greatly generalizes the previously known special cases and treats also the case of non-standard Kodaira types for non-perfect residue fields.
Let $F$ be a separable integral binary form of odd degree $N \geq 5$. A result of Darmon and Granville known as ‘Faltings plus epsilon’ implies that the degree-$N$superelliptic equation$y^2 = F(x,z)$ has finitely many primitive integer solutions. In this paper, we consider the family $\mathscr {F}_N(f_0)$ of degree-$N$ superelliptic equations with fixed leading coefficient $f_0 \in \mathbb {Z} \smallsetminus \pm \mathbb {Z}^2$, ordered by height. For every sufficiently large $N$, we prove that among equations in the family $\mathscr {F}_N(f_0)$, more than $74.9\,\%$ are insoluble, and more than $71.8\,\%$ are everywhere locally soluble but fail the Hasse principle due to the Brauer–Manin obstruction. We further show that these proportions rise to at least $99.9\,\%$ and $96.7\,\%$, respectively, when $f_0$ has sufficiently many prime divisors of odd multiplicity. Our result can be viewed as a strong asymptotic form of ‘Faltings plus epsilon’ for superelliptic equations and constitutes an analogue of Bhargava's result that most hyperelliptic curves over $\mathbb {Q}$ have no rational points.
Let $\Sigma $ be a nonempty subset of the set of prime numbers which is either equal to the entire set of prime numbers or of cardinality one. In the present paper, we continue our study of the pro-$\Sigma $ fundamental groups of hyperbolic curves and their associated configuration spaces over algebraically closed fields in which the primes of $\Sigma $ are invertible. The present paper focuses on the topic of comparison between the theory developed in earlier papers concerning pro-$\Sigma $ fundamental groups and various discrete versions of this theory. We begin by developing a theory concerning certain combinatorial analogues of the section conjecture and Grothendieck conjecture. This portion of the theory is purely combinatorial and essentially follows from a result concerning the existence of fixed points of actions of finite groups on finite graphs (satisfying certain conditions). We then examine various applications of this purely combinatorial theory to scheme theory. Next, we verify various results in the theory of discrete fundamental groups of hyperbolic topological surfaces to the effect that various properties of (discrete) subgroups of such groups hold if and only if analogous properties hold for the closures of these subgroups in the profinite completions of the discrete fundamental groups under consideration. These results make possible a fairly straightforward translation, into discrete versions, of pro-$\Sigma $ results obtained in previous papers by the authors. Finally, we discuss a construction that was considered previously by M. Boggi in the discrete case from the point of view of the present paper.
Following Faber–Pandharipande, we use the virtual localization formula for the moduli space of stable maps to $\mathbb {P}^{1}$ to compute relations between Hodge integrals. We prove that certain generating series of these integrals are polynomials.
This paper goes beyond Katz–Sarnak theory on the distribution of curves over finite fields according to their number of rational points, theoretically, experimentally, and conjecturally. In particular, we give a formula for the limits of the moments measuring the asymmetry of this distribution for (non-hyperelliptic) curves of genus $g\geq 3$. The experiments point to a stronger notion of convergence than the one provided by the Katz–Sarnak framework for all curves of genus $\geq 3$. However, for elliptic curves and for hyperelliptic curves of every genus, we prove that this stronger convergence cannot occur.
Bogomolov and Tschinkel [‘Algebraic varieties over small fields’, Diophantine Geometry, U. Zannier (ed.), CRM Series, 4 (Scuola Normale Superiore di Pisa, Pisa, 2007), 73–91] proved that, given two complex elliptic curves $E_1$ and $E_2$ along with even degree-$2$ maps $\pi _j\colon E_j\to \mathbb {P}^1$ having different branch loci, the intersection of the image of the torsion points of $E_1$ and $E_2$ under their respective $\pi _j$ is finite. They conjectured (also in works with Fu) that the cardinality of this intersection is uniformly bounded independently of the elliptic curves. The recent proof of the uniform Manin–Mumford conjecture implies a full solution of the Bogomolov–Fu–Tschinkel conjecture. In this paper, we prove a generalisation of the Bogomolov–Fu–Tschinkel conjecture whereby, instead of even degree-$2$ maps, one can use any rational functions of bounded degree on the elliptic curves as long as they have different branch loci. Our approach combines Nevanlinna theory with the uniform Manin–Mumford conjecture. With similar techniques, we also prove a result on lower bounds for ranks of elliptic curves over number fields.
The Ceresa cycle is an algebraic cycle attached to a smooth algebraic curve with a marked point, which is trivial when the curve is hyperelliptic with a marked Weierstrass point. The image of the Ceresa cycle under a certain cycle class map provides a class in étale cohomology called the Ceresa class. Describing the Ceresa class explicitly for nonhyperelliptic curves is in general not easy. We present a ‘combinatorialization’ of this problem, explaining how to define a Ceresa class for a tropical algebraic curve and also for a topological surface endowed with a multiset of commuting Dehn twists (where it is related to the Morita cocycle on the mapping class group). We explain how these are related to the Ceresa class of a smooth algebraic curve over $\mathbb {C}(\!(t)\!)$ and show that the Ceresa class in each of these settings is torsion.
We investigate sections of the arithmetic fundamental group $\pi _1(X)$ where X is either a smooth affinoid p-adic curve, or a formal germ of a p-adic curve, and prove that they can be lifted (unconditionally) to sections of cuspidally abelian Galois groups. As a consequence, if X admits a compactification Y, and the exact sequence of $\pi _1(X)$splits, then $\text {index} (Y)=1$. We also exhibit a necessary and sufficient condition for a section of $\pi _1(X)$ to arise from a rational point of Y. One of the key ingredients in our investigation is the fact, we prove in this paper in case X is affinoid, that the Picard group of X is finite.
The problem of classifying elliptic curves over $\mathbb Q$ with a given discriminant has received much attention. The analogous problem for genus $2$ curves has only been tackled when the absolute discriminant is a power of $2$. In this article, we classify genus $2$ curves C defined over ${\mathbb Q}$ with at least two rational Weierstrass points and whose absolute discriminant is an odd prime. In fact, we show that such a curve C must be isomorphic to a specialization of one of finitely many $1$-parameter families of genus $2$ curves. In particular, we provide genus $2$ analogues to Neumann–Setzer families of elliptic curves over the rationals.
We investigate the equation $D=x^4-y^4$ in field extensions. As an application, for a prime number p, we find solutions to $p=x^4-y^4$ if $p\equiv 11$ (mod 16) and $p^3=x^4-y^4$ if $p\equiv 3$ (mod 16) in all cubic extensions of $\mathbb{Q}(i)$.
Hyperelliptic mapping class groups are defined either as the centralizers of hyperelliptic involutions inside mapping class groups of oriented surfaces of finite type or as the inverse images of these centralizers by the natural epimorphisms between mapping class groups of surfaces with marked points. We study these groups in a systematic way. An application of this theory is a counterexample to the genus $2$ case of a conjecture by Putman and Wieland on virtual linear representations of mapping class groups. In the last section, we study profinite completions of hyperelliptic mapping class groups: we extend the congruence subgroup property to the general class of hyperelliptic mapping class groups introduced above and then determine the centralizers of multitwists and of open subgroups in their profinite completions.
In this paper, we determine the number of general points through which a Brill–Noether curve of fixed degree and genus in any projective space can be passed.
Let $\mathfrak{A}$ be a finite abelian group. In this paper, we classify harmonic $\mathfrak{A}$-covers of a tropical curve $\Gamma$ (which allow dilation along edges and at vertices) in terms of the cohomology group of a suitably defined sheaf on $\Gamma$. We give a realisability criterion for harmonic $\mathfrak{A}$-covers by patching local monodromy data in an extended homology group on $\Gamma$. As an explicit example, we work out the case $\mathfrak{A}=\mathbb{Z}/p\mathbb{Z}$ and explain how realisability for such covers is related to the nowhere-zero flow problem from graph theory.