To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
It is argued that a nonsingular elliptic curve admits a natural or fundamental abelian heap structure uniquely determined by the curve itself. It is shown that the set of complex analytic or rational functions from a nonsingular elliptic curve to itself is a truss arising from endomorphisms of this heap.
We show that all large enough positive integral surgeries on algebraic knots bound a 4-manifold with a negative definite plumbing tree, which we describe explicitly. Then we apply the lattice embedding obstruction coming from Donaldson’s Theorem to classify the ones of the form $S^3_n(T(p_1,k_1p_1+1; p_2, k_2p_2\pm 1))$ that also bound rational homology 4-balls.
Let $(S,L)$ be a general polarised Enriques surface, with L not numerically 2-divisible. We prove the existence of regular components of all Severi varieties of irreducible nodal curves in the linear system $|L|$, that is, for any number of nodes $\delta =0, \ldots , p_a(L)-1$. This solves a classical open problem and gives a positive answer to a recent conjecture of Pandharipande–Schmitt, under the additional condition of non-2-divisibility.
Let k be a field of characteristic zero and let $\Omega_{A/k}$ be the universally finite differential module of a k-algebra A, which is the local ring of a closed point of an algebraic or algebroid curve over k. A notorious open problem, known as Berger’s Conjecture, predicts that A must be regular if $\Omega_{A/k}$ is torsion-free. In this paper, assuming the hypotheses of the conjecture and observing that the module ${\rm Hom}_A(\Omega_{A/k}, \Omega_{A/k})$ is then isomorphic to an ideal of A, say $\mathfrak{h}$, we show that A is regular whenever the ring $A/a\mathfrak{h}$ is Gorenstein for some parameter a (and conversely). In addition, we provide various characterizations for the regularity of A in the context of the conjecture.
We prove the integral Hodge conjecture for one-cycles on a principally polarized complex abelian variety whose minimal class is algebraic. In particular, the Jacobian of a smooth projective curve over the complex numbers satisfies the integral Hodge conjecture for one-cycles. The main ingredient is a lift of the Fourier transform to integral Chow groups. Similarly, we prove the integral Tate conjecture for one-cycles on the Jacobian of a smooth projective curve over the separable closure of a finitely generated field. Furthermore, abelian varieties satisfying such a conjecture are dense in their moduli space.
We study plane curves over finite fields whose tangent lines at smooth $\mathbb {F}_q$-points together cover all the points of $\mathbb {P}^2(\mathbb {F}_q)$.
In this paper we study the $\mathbb {C}^*$-fixed points in moduli spaces of Higgs bundles over a compact Riemann surface for a complex semisimple Lie group and its real forms. These fixed points are called Hodge bundles and correspond to complex variations of Hodge structure. We introduce a topological invariant for Hodge bundles that generalizes the Toledo invariant appearing for Hermitian Lie groups. An important result of this paper is a bound on this invariant which generalizes the Milnor–Wood inequality for a Hodge bundle in the Hermitian case, and is analogous to the Arakelov inequalities of classical variations of Hodge structure. When the generalized Toledo invariant is maximal, we establish rigidity results for the associated variations of Hodge structure which generalize known rigidity results for maximal Higgs bundles and their associated maximal representations in the Hermitian case.
Let $ {\mathcal C} $ be an algebraic curve and c be an analytically irreducible singular point of ${\mathcal C}$. The set ${\mathscr {L}_{\infty }}({\mathcal C})^c$ of arcs with origin c is an irreducible closed subset of the space of arcs on ${\mathcal C}$. We obtain a presentation of the formal neighborhood of the generic point of this set which can be interpreted in terms of deformations of the generic arc defined by this point. This allows us to deduce a strong connection between the aforementioned formal neighborhood and the formal neighborhood in the arc space of any primitive parametrization of the singularity c. This may be interpreted as the fact that analytically along ${\mathscr {L}_{\infty }}({\mathcal C})^c$ the arc space is a product of a finite dimensional singularity and an infinite dimensional affine space.
We prove that the moduli space of rational curves with cyclic action, constructed in our previous work, is realizable as a wonderful compactification of the complement of a hyperplane arrangement in a product of projective spaces. By proving a general result on such wonderful compactifications, we conclude that this moduli space is Chow-equivalent to an explicit toric variety (whose fan can be understood as a tropical version of the moduli space), from which a computation of its Chow ring follows.
We give cases in which nearby cycles commute with pushforward from sheaves on the moduli stack of shtukas to a product of curves over a finite field. The proof systematically uses the property that taking nearby cycles of Satake sheaves on the Beilinson–Drinfeld Grassmannian with parahoric reduction is a central functor together with a ‘Zorro's lemma’ argument similar to that of Xue [Smoothness of cohomology sheaves of stacks of shtukas, Preprint (2020), arXiv:2012.12833]. As an application, for automorphic forms at the parahoric level, we characterize the image of tame inertia under the Langlands correspondence in terms of two-sided cells.
We address Hodge integrals over the hyperelliptic locus. Recently Afandi computed, via localisation techniques, such one-descendant integrals and showed that they are Stirling numbers. We give another proof of the same statement by a very short argument, exploiting Chern classes of spin structures and relations arising from Topological Recursion in the sense of Eynard and Orantin.
These techniques seem also suitable to deal with three orthogonal generalisations: (1) the extension to the r-hyperelliptic locus; (2) the extension to an arbitrary number of non-Weierstrass pairs of points; (3) the extension to multiple descendants.
We bound from below the complexity of the top Chern class $\lambda _g$ of the Hodge bundle in the Chow ring of the moduli space of curves: no formulas for $\lambda _g$ in terms of classes of degrees 1 and 2 can exist. As a consequence of the Torelli map, the 0-section over the second Voronoi compactification of the moduli of principally polarized abelian varieties also cannot be expressed in terms of classes of degree 1 and 2. Along the way, we establish new cases of Pixton's conjecture for tautological relations. In the log Chow ring of the moduli space of curves, however, we prove $\lambda _g$ lies in the subalgebra generated by logarithmic boundary divisors. The proof is effective and uses Pixton's double ramification cycle formula together with a foundational study of the tautological ring defined by a normal crossings divisor. The results open the door to the search for simpler formulas for $\lambda _g$ on the moduli of curves after log blow-ups.
For any odd integer $d$, we give a presentation for the integral Chow ring of the stack $\mathcal {M}_{0}(\mathbb {P}^r, d)$, as a quotient of the polynomial ring $\mathbb {Z}[c_1,c_2]$. We describe an efficient set of generators for the ideal of relations, and compute them in generating series form. The paper concludes with explicit computations of some examples for low values of $d$ and $r$, and a conjecture for a minimal set of generators.
The pentagram map, introduced by Schwartz [The pentagram map. Exp. Math.1(1) (1992), 71–81], is a dynamical system on the moduli space of polygons in the projective plane. Its real and complex dynamics have been explored in detail. We study the pentagram map over an arbitrary algebraically closed field of characteristic not equal to 2. We prove that the pentagram map on twisted polygons is a discrete integrable system, in the sense of algebraic complete integrability: the pentagram map is birational to a self-map of a family of abelian varieties. This generalizes Soloviev’s proof of complex integrability [F. Soloviev. Integrability of the pentagram map. Duke Math. J.162(15) (2013), 2815–2853]. In the course of the proof, we construct the moduli space of twisted n-gons, derive formulas for the pentagram map, and calculate the Lax representation by characteristic-independent methods.
In a previous paper, we discussed Frobenius-projective structures on projective smooth curves in positive characteristic and established a relationship between pseudo-coordinates and Frobenius-indigenous structures by means of Frobenius-projective structures. In the present paper, we discuss an “affine version” of this study of Frobenius-projective structures. More specifically, we discuss Frobenius-affine structures and establish a similar relationship between Tango functions and Frobenius-affine-indigenous structures by means of Frobenius-affine structures. Moreover, we also consider a relationship between these objects and Tango curves.
We investigate a novel geometric Iwasawa theory for ${\mathbf Z}_p$-extensions of function fields over a perfect field k of characteristic $p>0$ by replacing the usual study of p-torsion in class groups with the study of p-torsion class group schemes. That is, if $\cdots \to X_2 \to X_1 \to X_0$ is the tower of curves over k associated with a ${\mathbf Z}_p$-extension of function fields totally ramified over a finite nonempty set of places, we investigate the growth of the p-torsion group scheme in the Jacobian of $X_n$ as $n\rightarrow \infty $. By Dieudonné theory, this amounts to studying the first de Rham cohomology groups of $X_n$ equipped with natural actions of Frobenius and of the Cartier operator V. We formulate and test a number of conjectures which predict striking regularity in the $k[V]$-module structure of the space $M_n:=H^0(X_n, \Omega ^1_{X_n/k})$ of global regular differential forms as $n\rightarrow \infty .$ For example, for each tower in a basic class of ${\mathbf Z}_p$-towers, we conjecture that the dimension of the kernel of $V^r$ on $M_n$ is given by $a_r p^{2n} + \lambda _r n + c_r(n)$ for all n sufficiently large, where $a_r, \lambda _r$ are rational constants and $c_r : {\mathbf Z}/m_r {\mathbf Z} \to {\mathbf Q}$ is a periodic function, depending on r and the tower. To provide evidence for these conjectures, we collect extensive experimental data based on new and more efficient algorithms for working with differentials on ${\mathbf Z}_p$-towers of curves, and we prove our conjectures in the case $p=2$ and $r=1$.
We consider an analogue of Kontsevich’s matrix Airy function where the cubic potential $\textrm{Tr}(\Phi^3)$ is replaced by a quartic term $\textrm{Tr}\!\left(\Phi^4\right)$. Cumulants of the resulting measure are known to decompose into cycle types for which a recursive system of equations can be established. We develop a new, purely algebraic geometrical solution strategy for the two initial equations of the recursion, based on properties of Cauchy matrices. These structures led in subsequent work to the discovery that the quartic analogue of the Kontsevich model obeys blobbed topological recursion.
We discuss the $\ell $-adic case of Mazur’s ‘Program B’ over $\mathbb {Q}$: the problem of classifying the possible images of $\ell $-adic Galois representations attached to elliptic curves E over $\mathbb {Q}$, equivalently, classifying the rational points on the corresponding modular curves. The primes $\ell =2$ and $\ell \ge 13$ are addressed by prior work, so we focus on the remaining primes $\ell = 3, 5, 7, 11$. For each of these $\ell $, we compute the directed graph of arithmetically maximal $\ell $-power level modular curves $X_H$, compute explicit equations for all but three of them and classify the rational points on all of them except $X_{\mathrm {ns}}^{+}(N)$, for $N = 27, 25, 49, 121$ and two-level $49$ curves of genus $9$ whose Jacobians have analytic rank $9$.
Aside from the $\ell $-adic images that are known to arise for infinitely many ${\overline {\mathbb {Q}}}$-isomorphism classes of elliptic curves $E/\mathbb {Q}$, we find only 22 exceptional images that arise for any prime $\ell $ and any $E/\mathbb {Q}$ without complex multiplication; these exceptional images are realised by 20 non-CM rational j-invariants. We conjecture that this list of 22 exceptional images is complete and show that any counterexamples must arise from unexpected rational points on $X_{\mathrm {ns}}^+(\ell )$ with $\ell \ge 19$, or one of the six modular curves noted above. This yields a very efficient algorithm to compute the $\ell $-adic images of Galois for any elliptic curve over $\mathbb {Q}$.
In an appendix with John Voight, we generalise Ribet’s observation that simple abelian varieties attached to newforms on $\Gamma _1(N)$ are of $\operatorname {GL}_2$-type; this extends Kolyvagin’s theorem that analytic rank zero implies algebraic rank zero to isogeny factors of the Jacobian of $X_H$.
In this paper, we formulate and present ample evidence towards the conjecture that the partition function (i.e. the exponential of the generating series of intersection numbers with monomials in psi classes) of the Pixton class on the moduli space of stable curves is the topological tau function of the noncommutative Korteweg-de Vries hierarchy, which we introduced in a previous work. The specialisation of this conjecture to the top degree part of Pixton’s class states that the partition function of the double ramification cycle is the tau function of the dispersionless limit of this hierarchy. In fact, we prove that this conjecture follows from the double ramification/Dubrovin–Zhang equivalence conjecture. We also provide several independent computational checks in support of it.
We construct the logarithmic and tropical Picard groups of a family of logarithmic curves and realize the latter as the quotient of the former by the algebraic Jacobian. We show that the logarithmic Jacobian is a proper family of logarithmic abelian varieties over the moduli space of Deligne–Mumford stable curves, but does not possess an underlying algebraic stack. However, the logarithmic Picard group does have logarithmic modifications that are representable by logarithmic schemes, all of which are obtained by pullback from subdivisions of the tropical Picard group.