To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\unicode[STIX]{x1D709}$ be a stable Chern character on $\mathbb{P}^{1}\times \mathbb{P}^{1}$, and let $M(\unicode[STIX]{x1D709})$ be the moduli space of Gieseker semistable sheaves on $\mathbb{P}^{1}\times \mathbb{P}^{1}$ with Chern character $\unicode[STIX]{x1D709}$. In this paper, we provide an approach to computing the effective cone of $M(\unicode[STIX]{x1D709})$. We find Brill–Noether divisors spanning extremal rays of the effective cone using resolutions of the general elements of $M(\unicode[STIX]{x1D709})$ which are found using the machinery of exceptional bundles. We use this approach to provide many examples of extremal rays in these effective cones. In particular, we completely compute the effective cone of the first fifteen Hilbert schemes of points on $\mathbb{P}^{1}\times \mathbb{P}^{1}$.
We study various measures of irrationality for hypersurfaces of large degree in projective space and other varieties. These include the least degree of a rational covering of projective space, and the minimal gonality of a covering family of curves. The theme is that positivity properties of canonical bundles lead to lower bounds on these invariants. In particular, we prove that if $X\subseteq \mathbf{P}^{n+1}$ is a very general smooth hypersurface of dimension $n$ and degree $d\geqslant 2n+1$, then any dominant rational mapping $f:X{\dashrightarrow}\mathbf{P}^{n}$ must have degree at least $d-1$. We also propose a number of open problems, and we show how our methods lead to simple new proofs of results of Ran and Beheshti–Eisenbud concerning varieties of multi-secant lines.
Using the geometry of an almost del Pezzo threefold, we show that the moduli space ${\mathcal{S}}_{g,1}^{0,\text{hyp}}$ of genus $g$ one-pointed ineffective spin hyperelliptic curves is rational for every $g\geqslant 2$.
Let $k$ be a field of characteristic $2$. We give a geometric proof that there are no smooth quartic surfaces $S\subset \mathbb{P}_{k}^{3}$ with more than 64 lines (predating work of Degtyarev which improves this bound to 60). We also exhibit a smooth quartic containing 60 lines which thus attains the record in characteristic $2$.
We show that any $n$-dimensional Fano manifold $X$ with $\unicode[STIX]{x1D6FC}(X)=n/(n+1)$ and $n\geqslant 2$ is K-stable, where $\unicode[STIX]{x1D6FC}(X)$ is the alpha invariant of $X$ introduced by Tian. In particular, any such $X$ admits Kähler–Einstein metrics and the holomorphic automorphism group $\operatorname{Aut}(X)$ of $X$ is finite.
We prove that a very general smooth cubic fourfold containing a plane can be embedded into an irreducible holomorphic symplectic eightfold as a Lagrangian submanifold. We construct the desired irreducible holomorphic symplectic eightfold as a moduli space of Bridgeland stable objects in the derived category of the twisted K3 surface corresponding to the cubic fourfold containing a plane.
Voevodsky has conjectured that numerical equivalence and smash-equivalence coincide for algebraic cycles on any smooth projective variety. Building on work of Vial and Kahn–Sebastian, we give some new examples of varieties where Voevodsky's conjecture is verified.
A log symplectic manifold is a complex manifold equipped with a complex symplectic form that has simple poles on a hypersurface. The possible singularities of such a hypersurface are heavily constrained. We introduce the notion of an elliptic point of a log symplectic structure, which is a singular point at which a natural transversality condition involving the modular vector field is satisfied, and we prove a local normal form for such points that involves the simple elliptic surface singularities $\widetilde{E}_{6},\widetilde{E}_{7}$ and $\widetilde{E}_{8}$. Our main application is to the classification of Poisson brackets on Fano fourfolds. For example, we show that Feigin and Odesskii’s Poisson structures of type $q_{5,1}$ are the only log symplectic structures on projective four-space whose singular points are all elliptic.
Smooth cubic hypersurfaces $X\subset \mathbb{P}^{5}$ (over $\mathbb{C}$) are linked to K3 surfaces via their Hodge structures, due to the work of Hassett, and via a subcategory ${\mathcal{A}}_{X}\subset \text{D}^{\text{b}}(X)$, due to the work of Kuznetsov. The relation between these two viewpoints has recently been elucidated by Addington and Thomas. In this paper, both aspects are studied further and extended to twisted K3 surfaces, which in particular allows us to determine the group of autoequivalences of ${\mathcal{A}}_{X}$ for the general cubic fourfold. Furthermore, we prove finiteness results for cubics with equivalent K3 categories and study periods of cubics in terms of generalized K3 surfaces.
We show that the Craighero–Gattazzo surface, the minimal resolution of an explicit complex quintic surface with four elliptic singularities, is simply connected. This was conjectured by Dolgachev and Werner, who proved that its fundamental group has a trivial profinite completion. The Craighero–Gattazzo surface is the only explicit example of a smooth simply connected complex surface of geometric genus zero with ample canonical class. We hope that our method will find other applications: to prove a topological fact about a complex surface we use an algebraic reduction mod $p$ technique and deformation theory.
We prove that one can run the log minimal model program for log canonical 3-fold pairs in characteristic $p>5$. In particular, we prove the cone theorem, contraction theorem, the existence of flips and the existence of log minimal models for pairs with log divisor numerically equivalent to an effective divisor. These follow from our main results, which are that certain log minimal models are good.
We show that the finiteness of the fundamental groups of the smooth locus of lower dimensional log Fano pairs would imply the finiteness of the local fundamental group of Kawamata log terminal (klt) singularities. As an application, we verify that the local fundamental group of a three-dimensional klt singularity and the fundamental group of the smooth locus of a three-dimensional Fano variety with canonical singularities are always finite.
We prove that the canonical ring of a canonical variety in the sense of de Fernex and Hacon is finitely generated. We prove that canonical varieties are Kawamata log terminal (klt) if and only if is finitely generated. We introduce a notion of nefness for non-ℚ-Gorenstein varieties and study some of its properties. We then focus on these properties for non-ℚ-Gorenstein toric varieties.
We show that the pair (X, –KX) is K-unstable for a del Pezzo manifold X of degree 5 with dimension 4 or 5. This disproves a conjecture of Odaka and Okada.
Let X be a smooth rational surface. We calculate a differential graded (DG) quiver of a full exceptional collection of line bundles on X obtained by an augmentation from a strong exceptional collection on the minimal model of X. In particular, we calculate canonical DG algebras of smooth toric surfaces.
Let $S\subseteq \mathbb{P}^{d}$ be an anticanonically embedded surface of degree $d\geq 3$. In this note, we classify stable Ulrich bundles on $S$ of rank two. We also study their moduli spaces.
To a pair of elliptic curves, one can naturally attach two K3 surfaces: the Kummer surface of their product and a double cover of it, called the Inose surface. They have prominently featured in many interesting constructions in algebraic geometry and number theory. There are several more associated elliptic K3 surfaces, obtained through base change of the Inose surface; these have been previously studied by Masato Kuwata. We give an explicit description of the geometric Mordell–Weil groups of each of these elliptic surfaces in the generic case (when the elliptic curves are non-isogenous). In the nongeneric case, we describe a method to calculate explicitly a finite index subgroup of the Mordell–Weil group, which may be saturated to give the full group. Our methods rely on several interesting group actions, the use of rational elliptic surfaces, as well as connections to the geometry of low degree curves on cubic and quartic surfaces. We apply our techniques to compute the full Mordell–Weil group in several examples of arithmetic interest, arising from isogenous elliptic curves with complex multiplication, for which these K3 surfaces are singular.
Let $(X,\unicode[STIX]{x1D6E5})$ be an $n$-dimensional $\unicode[STIX]{x1D716}$-klt log $\mathbb{Q}$-Fano pair. We give an upper bound for the volume $\text{Vol}(X,\unicode[STIX]{x1D6E5})=(-(K_{X}+\unicode[STIX]{x1D6E5}))^{n}$ when $n=2$, or $n=3$ and $X$ is $\mathbb{Q}$-factorial of $\unicode[STIX]{x1D70C}(X)=1$. This bound is essentially sharp for $n=2$. The main idea is to analyze the covering families of tigers constructed in J. McKernan (Boundedness of log terminal fano pairs of bounded index, preprint, 2002, arXiv:0205214). Existence of an upper bound for volumes is related to the Borisov–Alexeev–Borisov Conjecture, which asserts boundedness of the set of $\unicode[STIX]{x1D716}$-klt log $\mathbb{Q}$-Fano varieties of a given dimension $n$.
In this paper, we exhibit explicit automorphisms of maximal Salem degree 22 on the supersingular K3 surface of Artin invariant one for all primes $p\equiv 3~\text{mod}\,4$ in a systematic way. Automorphisms of Salem degree 22 do not lift to any characteristic zero model.
For moduli spaces of sheaves with symmetric $c_{1}$ on a quadric surface, we pursue analogy to some results known for moduli spaces of sheaves on a projective plane. We define an invariant height, introduced by Drezet in the projective plane case, for moduli spaces of sheaves with symmetric $c_{1}$ on a quadric surface and describe the structure of moduli spaces of height zero. Then we study rational maps of moduli spaces of positive height to moduli spaces of representation of quivers, effective cones of moduli spaces, and strange duality for height-zero moduli spaces.