To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this note, using methods introduced by Hacon et al. [‘Boundedness of varieties of log general type’, Proceedings of Symposia in Pure Mathematics, Volume 97 (American Mathematical Society, Providence, RI, 2018) 309–348], we study the accumulation points of volumes of varieties of log general type. First, we show that if the set of boundary coefficients Λ satisfies the descending chain condition (DCC), is closed under limits and contains 1, then the corresponding set of volumes satisfies the DCC and is closed under limits. Then, we consider the case of ε-log canonical varieties, for 0 < ε < 1. In this situation, we prove that if Λ is finite, then the corresponding set of volumes is discrete.
We prove that a generic homogeneous polynomial of degree $d$ is determined, up to a nonzero constant multiplicative factor, by the vector space spanned by its partial derivatives of order $k$ for $k\leqslant \frac{d}{2}-1$.
Let ${\mathcal{F}}_{g}^{\mathbf{N}}$ be the moduli space of polarized Nikulin surfaces $(Y,H)$ of genus $g$ and let ${\mathcal{P}}_{g}^{\mathbf{N}}$ be the moduli of triples $(Y,H,C)$, with $C\in |H|$ a smooth curve. We study the natural map $\unicode[STIX]{x1D712}_{g}:{\mathcal{P}}_{g}^{\mathbf{N}}\rightarrow {\mathcal{R}}_{g}$, where ${\mathcal{R}}_{g}$ is the moduli space of Prym curves of genus $g$. We prove that it is generically injective on every irreducible component, with a few exceptions in low genus. This gives a complete picture of the map $\unicode[STIX]{x1D712}_{g}$ and confirms some striking analogies between it and the Mukai map $m_{g}:{\mathcal{P}}_{g}\rightarrow {\mathcal{M}}_{g}$ for moduli of triples $(Y,H,C)$, where $(Y,H)$ is any genus $g$ polarized $K3$ surface. The proof is by degeneration to boundary points of a partial compactification of ${\mathcal{F}}_{g}^{\mathbf{N}}$. These represent the union of two surfaces with four even nodes and effective anticanonical class, which we call half Nikulin surfaces. The use of this degeneration is new with respect to previous techniques.
We first characterize the automorphism groups of Hodge structures of cubic threefolds and cubic fourfolds. Then we determine for some complex projective manifolds of small dimension (cubic surfaces, cubic threefolds, and nonhyperelliptic curves of genus 3 or 4), the action of their automorphism groups on Hodge structures of associated cyclic covers, and thus confirm conjectures made by Kudla and Rapoport in (Pacific J. Math. 260(2) (2012), 565–581).
Moduli spaces of stable objects in the derived category of a $K3$ surface provide a large class of holomorphic symplectic varieties. In this paper, we study the interplay between Chern classes of stable objects and zero-cycles on holomorphic symplectic varieties which arise as moduli spaces. First, we show that the second Chern class of any object in the derived category lies in a suitable piece of O’Grady’s filtration on the $\text{CH}_{0}$-group of the $K3$ surface. This solves a conjecture of O’Grady and improves on previous results of Huybrechts, O’Grady, and Voisin. Second, we propose a candidate for the Beauville–Voisin filtration on the $\text{CH}_{0}$-group of the moduli space of stable objects. We discuss its connection with Voisin’s recent proposal via constant cycle subvarieties, and prove a conjecture of hers on the existence of special algebraically coisotropic subvarieties for the moduli space.
We systematically produce algebraic varieties with torus action by constructing them as suitably embedded subvarieties of toric varieties. The resulting varieties admit an explicit treatment in terms of toric geometry and graded ring theory. Our approach extends existing constructions of rational varieties with torus action of complexity one and delivers all Mori dream spaces with torus action. We exhibit the example class of ‘general arrangement varieties’ and obtain classification results in the case of complexity two and Picard number at most two, extending former work in complexity one.
Let X be a non-singular irreducible complex projective curve of genus g ≥ 2. The concept of stability of coherent systems over X depends on a positive real parameter α, given then a (finite) family of moduli spaces of coherent systems. We use (t, ℓ)-stability to prove the existence of coherent systems over X that are α-stable for all allowed α > 0.
In [5], Eklund showed that a general (ℤ/2ℤ)4 -invariant quartic K3 surface contains at least 320 conics. In this paper, we analyse the field of definition of those conics as well as their Monodromy group. As a result, we prove that the moduli space of (ℤ/2ℤ)4-invariant quartic K3 surface with a certain marked conic has 10 irreducible components.
We describe the irreducible components of the jet schemes with origin in the singular locus of a two-dimensional quasi-ordinary hypersurface singularity. A weighted graph is associated with these components and with their embedding dimensions and their codimensions in the jet schemes of the ambient space. We prove that the data of this weighted graph is equivalent to the data of the topological type of the singularity. We also determine a component of the jet schemes (equivalent to a divisorial valuation on $\mathbb{A}^{3}$), that computes the log-canonical threshold of the singularity embedded in $\mathbb{A}^{3}$. This provides us with pairs $X\subset \mathbb{A}^{3}$ whose log-canonical thresholds are not computed by monomial divisorial valuations. Note that for a pair $C\subset \mathbb{A}^{2}$, where $C$ is a plane curve, the log-canonical threshold is always computed by a monomial divisorial valuation (in suitable coordinates of $\mathbb{A}^{2}$).
The Chern–Schwartz–MacPherson class of a hypersurface in a nonsingular variety may be computed directly from the Segre class of the Jacobian subscheme of the hypersurface; this has been known for a number of years. We generalize this fact to arbitrary embeddable schemes: for every subscheme $X$ of a nonsingular variety $V$, we define an associated subscheme $\mathscr{Y}$ of a projective bundle $\mathscr{V}$ over $V$ and provide an explicit formula for the Chern–Schwartz–MacPherson class of $X$ in terms of the Segre class of $\mathscr{Y}$ in $\mathscr{V}$. If $X$ is a local complete intersection, a version of the result yields a direct expression for the Milnor class of $X$.
For $V=\mathbb{P}^{n}$, we also obtain expressions for the Chern–Schwartz–MacPherson class of $X$ in terms of the ‘Segre zeta function’ of $\mathscr{Y}$.
Let ${\mathcal{X}}$ be a regular variety, flat and proper over a complete regular curve over a finite field such that the generic fiber $X$ is smooth and geometrically connected. We prove that the Brauer group of ${\mathcal{X}}$ is finite if and only Tate’s conjecture for divisors on $X$ holds and the Tate–Shafarevich group of the Albanese variety of $X$ is finite, generalizing a theorem of Artin and Grothendieck for surfaces to arbitrary relative dimension. We also give a formula relating the orders of the group under the assumption that they are finite, generalizing the known formula for a surface.
This note is about certain locally complete families of Calabi–Yau varieties constructed by Cynk and Hulek, and certain varieties constructed by Schreieder. We prove that the cycle class map on the Chow ring of powers of these varieties admits a section, and that these varieties admit a multiplicative self-dual Chow–Künneth decomposition. As a consequence of both results, we prove that the subring of the Chow ring generated by divisors, Chern classes, and intersections of two cycles of positive codimension injects into cohomology via the cycle class map. We also prove that the small diagonal of Schreieder surfaces admits a decomposition similar to that of K3 surfaces. As a by-product of our main result, we verify a conjecture of Voisin concerning zero-cycles on the self-product of Cynk–Hulek Calabi–Yau varieties, and in the odd-dimensional case we verify a conjecture of Voevodsky concerning smash-equivalence. Finally, in positive characteristic, we show that the supersingular Cynk–Hulek Calabi–Yau varieties provide examples of Calabi–Yau varieties with “degenerate” motive.
We prove that every birationally superrigid Fano variety whose alpha invariant is greater than (respectively no smaller than) $\frac{1}{2}$ is K-stable (respectively K-semistable). We also prove that the alpha invariant of a birationally superrigid Fano variety of dimension $n$ is at least $1/(n+1)$ (under mild assumptions) and that the moduli space (if it exists) of birationally superrigid Fano varieties is separated.
By work of Looijenga and others, one understands the relationship between Geometric Invariant Theory (GIT) and Baily–Borel compactifications for the moduli spaces of degree-$2$$K3$ surfaces, cubic fourfolds, and a few other related examples. The similar-looking cases of degree-$4$$K3$ surfaces and double Eisenbud–Popescu–Walter (EPW) sextics turn out to be much more complicated for arithmetic reasons. In this paper, we refine work of Looijenga in order to handle these cases. Specifically, in analogy with the so-called Hassett–Keel program for the moduli space of curves, we study the variation of log canonical models for locally symmetric varieties of Type IV associated to $D$-lattices. In particular, for the $19$-dimensional case, we conjecturally obtain a continuous one-parameter interpolation between the GIT and Baily–Borel compactifications for the moduli of degree-$4$$K3$ surfaces. The analogous $18$-dimensional case, which corresponds to hyperelliptic degree-$4$$K3$ surfaces, can be verified by means of Variation of Geometric Invariant Theory (VGIT) quotients.
In this article, I give a crystalline characterization of abelian varieties amongst the class of smooth projective varieties with trivial tangent bundles in characteristic $p>0$. Using my characterization, I show that a smooth, projective, ordinary variety with trivial tangent bundle is an abelian variety if and only if its second crystalline cohomology is torsion-free. I also show that a conjecture of KeZheng Li about smooth projective varieties with trivial tangent bundles in characteristic $p>0$ is true for smooth projective surfaces. I give a new proof of a result by Li and prove a refinement of it. Based on my characterization of abelian varieties, I propose modifications of Li’s conjecture, which I expect to be true.
We prove that a reduced and irreducible algebraic surface in $\mathbb{CP}^{3}$ containing infinitely many twistor lines cannot have odd degree. Then, exploiting the theory of quaternionic slice regularity and the normalisation map of a surface, we give constructive existence results for even degrees.
We construct non-archimedean SYZ (Strominger–Yau–Zaslow) fibrations for maximally degenerate Calabi–Yau varieties, and we show that they are affinoid torus fibrations away from a codimension-two subset of the base. This confirms a prediction by Kontsevich and Soibelman. We also give an explicit description of the induced integral affine structure on the base of the SYZ fibration. Our main technical tool is a study of the structure of minimal dlt (divisorially log terminal) models along one-dimensional strata.
Derived equivalences of twisted K3 surfaces induce twisted Hodge isometries between them; that is, isomorphisms of their cohomologies which respect certain natural lattice structures and Hodge structures. We prove a criterion for when a given Hodge isometry arises in this way. In particular, we describe the image of the representation which associates to any autoequivalence of a twisted K3 surface its realization in cohomology: this image is a subgroup of index $1$ or $2$ in the group of all Hodge isometries of the twisted K3 surface. We show that both indices can occur.
We give a proof of the formality conjecture of Kaledin and Lehn: on a complex projective K3 surface, the differential graded (DG) algebra $\operatorname{RHom}^{\bullet }(F,F)$ is formal for any sheaf $F$ polystable with respect to an ample line bundle. Our main tool is the uniqueness of the DG enhancement of the bounded derived category of coherent sheaves. We also extend the formality result to derived objects that are polystable with respect to a generic Bridgeland stability condition.