To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We use tropical curves and toric degeneration techniques to construct closed embedded Lagrangian rational homology spheres in a lot of Calabi-Yau threefolds. The homology spheres are mirror dual to the holomorphic curves contributing to the Gromov-Witten (GW) invariants. In view of Joyce’s conjecture, these Lagrangians are expected to have special Lagrangian representatives and hence solve a special Lagrangian enumerative problem in Calabi-Yau threefolds.
We apply this construction to the tropical curves obtained from the 2,875 lines on the quintic Calabi-Yau threefold. Each admissible tropical curve gives a Lagrangian rational homology sphere in the corresponding mirror quintic threefold and the Joyce’s weight of each of these Lagrangians equals the multiplicity of the corresponding tropical curve.
As applications, we show that disjoint curves give pairwise homologous but non-Hamiltonian isotopic Lagrangians and we check in an example that $>300$ mutually disjoint curves (and hence Lagrangians) arise. Dehn twists along these Lagrangians generate an abelian subgroup of the symplectic mapping class group with that rank.
Tian’s criterion for K-stability states that a Fano variety of dimension n whose alpha invariant is greater than ${n}{/(n+1)}$ is K-stable. We show that this criterion is sharp by constructing n-dimensional singular Fano varieties with alpha invariants ${n}{/(n+1)}$ that are not K-polystable for sufficiently large n. We also construct K-unstable Fano varieties with alpha invariants ${(n-1)}{/n}$.
We compactify and regularise the space of initial values of a planar map with a quartic invariant and use this construction to prove its integrability in the sense of algebraic entropy. The system has certain unusual properties, including a sequence of points of indeterminacy in $\mathbb {P}^{1}\!\times \mathbb {P}^{1}$. These indeterminacy points lie on a singular fibre of the mapping to a corresponding QRT system and provide the existence of a one-parameter family of special solutions.
Yoshikawa in [Invent. Math. 156 (2004), 53–117] introduces a holomorphic torsion invariant of $K3$ surfaces with involution. In this paper we completely determine its structure as an automorphic function on the moduli space of such $K3$ surfaces. On every component of the moduli space, it is expressed as the product of an explicit Borcherds lift and a classical Siegel modular form. We also introduce its twisted version. We prove its modularity and a certain uniqueness of the modular form corresponding to the twisted holomorphic torsion invariant. This is used to study an equivariant analogue of Borcherds’ conjecture.
In this note, we study homology classes in the mirror quintic Calabi–Yau threefold that can be realized by special Lagrangian submanifolds. We have used Picard–Lefschetz theory to establish the monodromy action and to study the orbit of Lagrangian vanishing cycles. For many prime numbers $p,$ we can compute the orbit modulo p. We conjecture that the orbit in homology with coefficients in $\mathbb {Z}$ can be determined by these orbits with coefficients in $\mathbb {Z}_p$.
We study the moduli space of rank 2 instanton sheaves on ℙ3 in terms of representations of a quiver consisting of three vertices and four arrows between two pairs of vertices. Aiming at an alternative compactification for the moduli space of instanton sheaves, we show that for each rank 2 instanton sheaf, there is a stability parameter θ for which the corresponding quiver representation is θ-stable (in the sense of King), and that the space of stability parameters has a non-trivial wall-and-chamber decomposition. Looking more closely at instantons of low charge, we prove that there are stability parameters with respect to which every representation corresponding to a rank 2 instanton sheaf of charge 2 is stable and provide a complete description of the wall-and-chamber decomposition for representation corresponding to a rank 2 instanton sheaf of charge 1.
We classify real two-dimensional orbits of conformal subgroups such that the orbits contain two circular arcs through a point. Such surfaces must be toric and admit a Möbius automorphism group of dimension at least two. Our theorem generalizes the classical classification of Dupin cyclides.
Cluster algebras give rise to a class of Gorenstein rings which enjoy a large amount of symmetry. Concentrating on the rank 2 cases, we show how cluster varieties can be used to construct many interesting projective algebraic varieties. Our main application is then to construct hundreds of families of Fano 3-folds in codimensions 4 and 5. In particular, for Fano 3-folds in codimension 4 we construct at least one family for 187 of the 206 possible Hilbert polynomials contained in the Graded Ring Database.
We show that every coarse moduli space, parametrizing complex special linear rank-2 local systems with fixed boundary traces on a surface with nonempty boundary, is log Calabi–Yau in that it has a normal projective compactification with trivial log canonical divisor. We connect this to a novel symmetry of generating series for counts of essential multicurves on the surface.
We express nested Hilbert schemes of points and curves on a smooth projective surface as ‘virtual resolutions’ of degeneracy loci of maps of vector bundles on smooth ambient spaces. We show how to modify the resulting obstruction theories to produce the virtual cycles of Vafa–Witten theory and other sheaf-counting problems. The result is an effective way of calculating invariants (VW, SW, local PT and local DT) via Thom–Porteous-like Chern class formulae.
We present a systematic study of threefolds fibred by K3 surfaces that are mirror to sextic double planes. There are many parallels between this theory and the theory of elliptic surfaces. We show that the geometry of such threefolds is controlled by a pair of invariants, called the generalized functional and generalized homological invariants, and we derive an explicit birational model for them, which we call the Weierstrass form. We then describe how to resolve the singularities of the Weierstrass form to obtain the “minimal form”, which has mild singularities and is unique up to birational maps in codimension 2. Finally, we describe some of the geometric properties of threefolds in minimal form, including their singular fibres, canonical divisor, and Betti numbers.
Using Auroux’s description of Fukaya categories of symmetric products of punctured surfaces, we compute the partially wrapped Fukaya category of the complement of $k+1$ generic hyperplanes in $\mathbb{CP}^{n}$, for $k\geqslant n$, with respect to certain stops in terms of the endomorphism algebra of a generating set of objects. The stops are chosen so that the resulting algebra is formal. In the case of the complement of $n+2$ generic hyperplanes in $\mathbb{C}P^{n}$ ($n$-dimensional pair of pants), we show that our partial wrapped Fukaya category is equivalent to a certain categorical resolution of the derived category of the singular affine variety $x_{1}x_{2}\ldots x_{n+1}=0$. By localizing, we deduce that the (fully) wrapped Fukaya category of the $n$-dimensional pair of pants is equivalent to the derived category of $x_{1}x_{2}\ldots x_{n+1}=0$. We also prove similar equivalences for finite abelian covers of the $n$-dimensional pair of pants.
We compute the $g=1$, $n=1$ B-model Gromov–Witten invariant of an elliptic curve $E$ directly from the derived category $\mathsf{D}_{\mathsf{coh}}^{b}(E)$. More precisely, we carry out the computation of the categorical Gromov–Witten invariant defined by Costello using as target a cyclic $\mathscr{A}_{\infty }$ model of $\mathsf{D}_{\mathsf{coh}}^{b}(E)$ described by Polishchuk. This is the first non-trivial computation of a positive-genus categorical Gromov–Witten invariant, and the result agrees with the prediction of mirror symmetry: it matches the classical (non-categorical) Gromov–Witten invariants of a symplectic 2-torus computed by Dijkgraaf.
We prove some numerical inequality for the Horikawa indices for Eisenbud–Harris special nonhyperelliptic fibrations of genus 4 on algebraic surfaces under the assumption that the multiplication map of the fibration is not surjective. Furthermore, we prove that the inequality is best possible by constructing the examples satisfying the equality.
We compute the nef cone of the Hilbert scheme of points on a general rational elliptic surface. As a consequence of our computation, we show that the Morrison–Kawamata cone conjecture holds for these nef cones.
Let X be a normal projective variety of dimension n and G an abelian group of automorphisms such that all elements of $G\setminus \{\operatorname {id}\}$ are of positive entropy. Dinh and Sibony showed that G is actually free abelian of rank $\le n - 1$. The maximal rank case has been well understood by De-Qi Zhang. We aim to characterize the pair $(X, G)$ such that $\operatorname {rank} G = n - 2$.
We show that complex Fano hypersurfaces can have arbitrarily large degrees of irrationality. More precisely, if we fix a Fano index $e$, then the degree of irrationality of a very general complex Fano hypersurface of index $e$ and dimension n is bounded from below by a constant times $\sqrt{n}$. To our knowledge, this gives the first examples of rationally connected varieties with degrees of irrationality greater than 3. The proof follows a degeneration to characteristic $p$ argument, which Kollár used to prove nonrationality of Fano hypersurfaces. Along the way, we show that in a family of varieties, the invariant ‘the minimal degree of a dominant rational map to a ruled variety’ can only drop on special fibers. As a consequence, we show that for certain low-dimensional families of varieties, the degree of irrationality also behaves well under specialization.
We show that any smooth projective cubic hypersurface of dimension at least 29 over the rationals contains a rational line. A variation of our methods provides a similar result over p-adic fields. In both cases, we improve on previous results due to the second author and Wooley.
We include an appendix in which we highlight some slight modifications to a recent result of Papanikolopoulos and Siksek. It follows that the set of rational points on smooth projective cubic hypersurfaces of dimension at least 29 is generated via secant and tangent constructions from just a single point.
We study bundles on projective spaces that have vanishing lower cohomologies using their short minimal free resolutions. We partition the moduli $\mathcal{M}$ according to the Hilbert function H and classify all possible Hilbert functions H of such bundles. For each H, we describe a stratification of $\mathcal{M}_H$ by quotients of rational varieties. We show that the closed strata form a graded lattice given by the Betti numbers.