To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $X$ be a normal complex projective variety, $T\subseteq X$ a subvariety of dimension $m$ (possibly $T=X$) and $a:X\rightarrow A$ a morphism to an abelian variety such that $\text{Pic}^{0}(A)$ injects into $\text{Pic}^{0}(T)$; let $L$ be a line bundle on $X$ and $\unicode[STIX]{x1D6FC}\in \text{Pic}^{0}(A)$ a general element.
We introduce two new ingredients for the study of linear systems on $X$. First of all, we show the existence of a factorization of the map $a$, called the eventual map of$L$on$T$, which controls the behavior of the linear systems $|L\otimes \unicode[STIX]{x1D6FC}|_{|T}$, asymptotically with respect to the pullbacks to the connected étale covers $X^{(d)}\rightarrow X$ induced by the $d$-th multiplication map of $A$.
Second, we define the so-called continuous rank function$x\mapsto h_{a}^{0}(X_{|T},L+xM)$, where $M$ is the pullback of an ample divisor of $A$. This function extends to a continuous function of $x\in \mathbb{R}$, which is differentiable except possibly at countably many points; when $X=T$ we compute the left derivative explicitly.
As an application, we give quick short proofs of a wide range of new Clifford–Severi inequalities, i.e., geographical bounds of the form
The aim of this paper is to construct Calabi–Yau 4-folds as crepant resolutions of the quotients of a hyperkähler 4-fold $X$ by a non-symplectic involution $\unicode[STIX]{x1D6FC}$. We first compute the Hodge numbers of a Calabi–Yau constructed in this way in a general setting, and then we apply the results to several specific examples of non-symplectic involutions, producing Calabi–Yau 4-folds with different Hodge diamonds. Then we restrict ourselves to the case where $X$ is the Hilbert scheme of two points on a K3 surface $S$, and the involution $\unicode[STIX]{x1D6FC}$ is induced by a non-symplectic involution on the K3 surface. In this case we compare the Calabi–Yau 4-fold $Y_{S}$, which is the crepant resolution of $X/\unicode[STIX]{x1D6FC}$, with the Calabi–Yau 4-fold $Z_{S}$, constructed from $S$ through the Borcea–Voisin construction. We give several explicit geometrical examples of both these Calabi–Yau 4-folds, describing maps related to interesting linear systems as well as a rational $2:1$ map from $Z_{S}$ to $Y_{S}$.
Conversely, Catanese (2017) inquires about what conditions need to be satisfied by a group of that sort in order to be the fundamental group of a Kodaira fibration. In this short note we collect some restrictions on the image of the classifying map $m \colon \Pi_b \to \Gamma_g$ in terms of the coinvariant homology of $\Pi_g$. In particular, we observe that if π is the fundamental group of a Kodaira fibration with relative irregularity g−s, then $g \leq 1+ 6s$, and we show that this effectively constrains the possible choices for π, namely that there are group extensions as above that fail to satisfy this bound, hence it cannot be the fundamental group of a Kodaira fibration. A noteworthy consequence of this construction is that it provides examples of symplectic 4-manifolds that fail to admit a Kähler structure for reasons that eschew the usual obstructions.
We give a bound on the H-constants of configurations of smooth curves having transversal intersection points only on an algebraic surface of non-negative Kodaira dimension. We also study in detail configurations of lines on smooth complete intersections $X \subset \mathbb{P}_{\mathbb{C}}^{n + 2}$ of multi-degree d = (d1, …, dn), and we provide a sharp and uniform bound on their H-constants, which only depends on d.
Let $Y$ be a complex Enriques surface whose universal cover $X$ is birational to a general quartic Hessian surface. Using the result on the automorphism group of $X$ due to Dolgachev and Keum, we obtain a finite presentation of the automorphism group of $Y$. The list of elliptic fibrations on $Y$ and the list of combinations of rational double points that can appear on a surface birational to $Y$ are presented. As an application, a set of generators of the automorphism group of the generic Enriques surface is calculated explicitly.
An intrinsic quadric is a normal projective variety with a Cox ring defined by a single quadratic relation. We provide explicit descriptions of these varieties in the smooth case for small Picard numbers. As applications, we figure out in this setting the Fano examples and (affirmatively) test Fujita’s freeness conjecture.
For a line arrangement ${\mathcal{A}}$ in the complex projective plane $\mathbb{P}^{2}$, we investigate the compactification $\overline{F}$ in $\mathbb{P}^{3}$ of the affine Milnor fiber $F$ and its minimal resolution $\tilde{F}$. We compute the Chern numbers of $\tilde{F}$ in terms of the combinatorics of the line arrangement ${\mathcal{A}}$. As applications of the computation of the Chern numbers, we show that the minimal resolution is never a quotient of a ball; in addition, we also prove that $\tilde{F}$ is of general type when the arrangement has only nodes or triple points as singularities. Finally, we compute all the Hodge numbers of some $\tilde{F}$ by using some knowledge about the Milnor fiber monodromy of the arrangement.
Given systems of two (inhomogeneous) quadratic equations in four variables, it is known that the Hasse principle for integral points may fail. Sometimes this failure can be explained by some integral Brauer–Manin obstruction. We study the existence of a non-trivial algebraic part of the Brauer group for a family of such systems and show that the failure of the integral Hasse principle due to an algebraic Brauer–Manin obstruction is rare, as for a generic choice of a system the algebraic part of the Brauer-group is trivial. We use resolvent constructions to give quantitative upper bounds on the number of exceptions.
We consider compact Kählerian manifolds $X$ of even dimension 4 or more, endowed with a log-symplectic holomorphic Poisson structure $\unicode[STIX]{x1D6F1}$ which is sufficiently general, in a precise linear sense, with respect to its (normal-crossing) degeneracy divisor $D(\unicode[STIX]{x1D6F1})$. We prove that $(X,\unicode[STIX]{x1D6F1})$ has unobstructed deformations, that the tangent space to its deformation space can be identified in terms of the mixed Hodge structure on $H^{2}$ of the open symplectic manifold $X\setminus D(\unicode[STIX]{x1D6F1})$, and in fact coincides with this $H^{2}$ provided the Hodge number $h_{X}^{2,0}=0$, and finally that the degeneracy locus $D(\unicode[STIX]{x1D6F1})$ deforms locally trivially under deformations of $(X,\unicode[STIX]{x1D6F1})$.
For a hyper-Kähler manifold deformation equivalent to a generalized Kummer manifold, we prove that the action of the automorphism group on the total Betti cohomology group is faithful. This is a sort of generalization of a work of Beauville and a more recent work of Boissière, Nieper-Wisskirchen, and Sarti, concerning the action of the automorphism group of a generalized Kummer manifold on the second cohomology group.
We study a wide class of affine varieties, which we call affine Fano varieties. By analogy with birationally super-rigid Fano varieties, we define super-rigidity for affine Fano varieties, and provide many examples and non-examples of super-rigid affine Fano varieties.
Let π: X → ℙn be the d-cyclic covering branched along a smooth hypersurface Y ⊂ ℙn of degree d, 3 ≤ d ≤ n. We identify the minimal rational curves on X with d-tangent lines of Y and describe the scheme structure of the variety of minimal rational tangents 𝒞x ⊂ ℙTx(X) at a general point x ∈ X. We also show that the projective isomorphism type of 𝒞x varies in a maximal way as x moves over general points of X.
This note is a report on the observation that the Fano–Enriques threefolds with terminal cyclic quotient singularities admit Calabi–Yau threefolds as their double coverings. We calculate the invariants of those Calabi–Yau threefolds when the Picard number is one. It turns out that all of them are new examples.
We give a formula relating the order of the Brauer group of a surface fibered over a curve over a finite field to the order of the Tate–Shafarevich group of the Jacobian of the generic fiber. The formula implies that the Brauer group of a smooth and proper surface over a finite field is a square if it is finite.
We study abelian varieties and K3 surfaces with complex multiplication defined over number fields of fixed degree. We show that these varieties fall into finitely many isomorphism classes over an algebraic closure of the field of rational numbers. As an application we confirm finiteness conjectures of Shafarevich and Coleman in the CM case. In addition we prove the uniform boundedness of the Galois invariant subgroup of the geometric Brauer group for forms of a smooth projective variety satisfying the integral Mumford–Tate conjecture. When applied to K3 surfaces, this affirms a conjecture of Várilly-Alvarado in the CM case.
In this paper, we show that the cohomology of a general stable bundle on a Hirzebruch surface is determined by the Euler characteristic provided that the first Chern class satisfies necessary intersection conditions. More generally, we compute the Betti numbers of a general stable bundle. We also show that a general stable bundle on a Hirzebruch surface has a special resolution generalizing the Gaeta resolution on the projective plane. As a consequence of these results, we classify Chern characters such that the general stable bundle is globally generated.
We exhibit a Cremona transformation of $\mathbb{P}^{4}$ such that the base loci of the map and its inverse are birational to K3 surfaces. The two K3 surfaces are derived equivalent but not isomorphic to each other. As an application, we show that the difference of the two K3 surfaces annihilates the class of the affine line in the Grothendieck ring of varieties.
We study the derived categories of coherent sheaves on Gushel–Mukai varieties. In the derived category of such a variety, we isolate a special semiorthogonal component, which is a K3 or Enriques category according to whether the dimension of the variety is even or odd. We analyze the basic properties of this category using Hochschild homology, Hochschild cohomology, and the Grothendieck group. We study the K3 category of a Gushel–Mukai fourfold in more detail. Namely, we show this category is equivalent to the derived category of a K3 surface for a certain codimension 1 family of rational Gushel–Mukai fourfolds, and to the K3 category of a birational cubic fourfold for a certain codimension 3 family. The first of these results verifies a special case of a duality conjecture which we formulate. We discuss our results in the context of the rationality problem for Gushel–Mukai varieties, which was one of the main motivations for this work.
Given an $n$-dimensional variety $Z$ with rational singularities, we conjecture that if $f:Y\rightarrow Z$ is a resolution of singularities whose reduced exceptional divisor $E$ has simple normal crossings, then
We prove this when $Z$ has isolated singularities and when it is a toric variety. We deduce that for a divisor $D$ with isolated rational singularities on a smooth complex $n$-dimensional variety $X$, the generation level of Saito’s Hodge filtration on the localization $\mathscr{O}_{X}(\ast D)$ is at most $n-3$.
We show that the anti-canonical volume of an $n$-dimensional Kähler–Einstein $\mathbb{Q}$-Fano variety is bounded from above by certain invariants of the local singularities, namely $\operatorname{lct}^{n}\cdot \operatorname{mult}$ for ideals and the normalized volume function for real valuations. This refines a recent result by Fujita. As an application, we get sharp volume upper bounds for Kähler–Einstein Fano varieties with quotient singularities. Based on very recent results by Li and the author, we show that a Fano manifold is K-semistable if and only if a de Fernex–Ein–Mustaţă type inequality holds on its affine cone.