To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We describe the irreducible components of the jet schemes with origin in the singular locus of a two-dimensional quasi-ordinary hypersurface singularity. A weighted graph is associated with these components and with their embedding dimensions and their codimensions in the jet schemes of the ambient space. We prove that the data of this weighted graph is equivalent to the data of the topological type of the singularity. We also determine a component of the jet schemes (equivalent to a divisorial valuation on $\mathbb{A}^{3}$), that computes the log-canonical threshold of the singularity embedded in $\mathbb{A}^{3}$. This provides us with pairs $X\subset \mathbb{A}^{3}$ whose log-canonical thresholds are not computed by monomial divisorial valuations. Note that for a pair $C\subset \mathbb{A}^{2}$, where $C$ is a plane curve, the log-canonical threshold is always computed by a monomial divisorial valuation (in suitable coordinates of $\mathbb{A}^{2}$).
The Chern–Schwartz–MacPherson class of a hypersurface in a nonsingular variety may be computed directly from the Segre class of the Jacobian subscheme of the hypersurface; this has been known for a number of years. We generalize this fact to arbitrary embeddable schemes: for every subscheme $X$ of a nonsingular variety $V$, we define an associated subscheme $\mathscr{Y}$ of a projective bundle $\mathscr{V}$ over $V$ and provide an explicit formula for the Chern–Schwartz–MacPherson class of $X$ in terms of the Segre class of $\mathscr{Y}$ in $\mathscr{V}$. If $X$ is a local complete intersection, a version of the result yields a direct expression for the Milnor class of $X$.
For $V=\mathbb{P}^{n}$, we also obtain expressions for the Chern–Schwartz–MacPherson class of $X$ in terms of the ‘Segre zeta function’ of $\mathscr{Y}$.
Let ${\mathcal{X}}$ be a regular variety, flat and proper over a complete regular curve over a finite field such that the generic fiber $X$ is smooth and geometrically connected. We prove that the Brauer group of ${\mathcal{X}}$ is finite if and only Tate’s conjecture for divisors on $X$ holds and the Tate–Shafarevich group of the Albanese variety of $X$ is finite, generalizing a theorem of Artin and Grothendieck for surfaces to arbitrary relative dimension. We also give a formula relating the orders of the group under the assumption that they are finite, generalizing the known formula for a surface.
This note is about certain locally complete families of Calabi–Yau varieties constructed by Cynk and Hulek, and certain varieties constructed by Schreieder. We prove that the cycle class map on the Chow ring of powers of these varieties admits a section, and that these varieties admit a multiplicative self-dual Chow–Künneth decomposition. As a consequence of both results, we prove that the subring of the Chow ring generated by divisors, Chern classes, and intersections of two cycles of positive codimension injects into cohomology via the cycle class map. We also prove that the small diagonal of Schreieder surfaces admits a decomposition similar to that of K3 surfaces. As a by-product of our main result, we verify a conjecture of Voisin concerning zero-cycles on the self-product of Cynk–Hulek Calabi–Yau varieties, and in the odd-dimensional case we verify a conjecture of Voevodsky concerning smash-equivalence. Finally, in positive characteristic, we show that the supersingular Cynk–Hulek Calabi–Yau varieties provide examples of Calabi–Yau varieties with “degenerate” motive.
We prove that every birationally superrigid Fano variety whose alpha invariant is greater than (respectively no smaller than) $\frac{1}{2}$ is K-stable (respectively K-semistable). We also prove that the alpha invariant of a birationally superrigid Fano variety of dimension $n$ is at least $1/(n+1)$ (under mild assumptions) and that the moduli space (if it exists) of birationally superrigid Fano varieties is separated.
By work of Looijenga and others, one understands the relationship between Geometric Invariant Theory (GIT) and Baily–Borel compactifications for the moduli spaces of degree-$2$$K3$ surfaces, cubic fourfolds, and a few other related examples. The similar-looking cases of degree-$4$$K3$ surfaces and double Eisenbud–Popescu–Walter (EPW) sextics turn out to be much more complicated for arithmetic reasons. In this paper, we refine work of Looijenga in order to handle these cases. Specifically, in analogy with the so-called Hassett–Keel program for the moduli space of curves, we study the variation of log canonical models for locally symmetric varieties of Type IV associated to $D$-lattices. In particular, for the $19$-dimensional case, we conjecturally obtain a continuous one-parameter interpolation between the GIT and Baily–Borel compactifications for the moduli of degree-$4$$K3$ surfaces. The analogous $18$-dimensional case, which corresponds to hyperelliptic degree-$4$$K3$ surfaces, can be verified by means of Variation of Geometric Invariant Theory (VGIT) quotients.
In this article, I give a crystalline characterization of abelian varieties amongst the class of smooth projective varieties with trivial tangent bundles in characteristic $p>0$. Using my characterization, I show that a smooth, projective, ordinary variety with trivial tangent bundle is an abelian variety if and only if its second crystalline cohomology is torsion-free. I also show that a conjecture of KeZheng Li about smooth projective varieties with trivial tangent bundles in characteristic $p>0$ is true for smooth projective surfaces. I give a new proof of a result by Li and prove a refinement of it. Based on my characterization of abelian varieties, I propose modifications of Li’s conjecture, which I expect to be true.
We prove that a reduced and irreducible algebraic surface in $\mathbb{CP}^{3}$ containing infinitely many twistor lines cannot have odd degree. Then, exploiting the theory of quaternionic slice regularity and the normalisation map of a surface, we give constructive existence results for even degrees.
We construct non-archimedean SYZ (Strominger–Yau–Zaslow) fibrations for maximally degenerate Calabi–Yau varieties, and we show that they are affinoid torus fibrations away from a codimension-two subset of the base. This confirms a prediction by Kontsevich and Soibelman. We also give an explicit description of the induced integral affine structure on the base of the SYZ fibration. Our main technical tool is a study of the structure of minimal dlt (divisorially log terminal) models along one-dimensional strata.
Derived equivalences of twisted K3 surfaces induce twisted Hodge isometries between them; that is, isomorphisms of their cohomologies which respect certain natural lattice structures and Hodge structures. We prove a criterion for when a given Hodge isometry arises in this way. In particular, we describe the image of the representation which associates to any autoequivalence of a twisted K3 surface its realization in cohomology: this image is a subgroup of index $1$ or $2$ in the group of all Hodge isometries of the twisted K3 surface. We show that both indices can occur.
We give a proof of the formality conjecture of Kaledin and Lehn: on a complex projective K3 surface, the differential graded (DG) algebra $\operatorname{RHom}^{\bullet }(F,F)$ is formal for any sheaf $F$ polystable with respect to an ample line bundle. Our main tool is the uniqueness of the DG enhancement of the bounded derived category of coherent sheaves. We also extend the formality result to derived objects that are polystable with respect to a generic Bridgeland stability condition.
Let $X$ be a normal complex projective variety, $T\subseteq X$ a subvariety of dimension $m$ (possibly $T=X$) and $a:X\rightarrow A$ a morphism to an abelian variety such that $\text{Pic}^{0}(A)$ injects into $\text{Pic}^{0}(T)$; let $L$ be a line bundle on $X$ and $\unicode[STIX]{x1D6FC}\in \text{Pic}^{0}(A)$ a general element.
We introduce two new ingredients for the study of linear systems on $X$. First of all, we show the existence of a factorization of the map $a$, called the eventual map of$L$on$T$, which controls the behavior of the linear systems $|L\otimes \unicode[STIX]{x1D6FC}|_{|T}$, asymptotically with respect to the pullbacks to the connected étale covers $X^{(d)}\rightarrow X$ induced by the $d$-th multiplication map of $A$.
Second, we define the so-called continuous rank function$x\mapsto h_{a}^{0}(X_{|T},L+xM)$, where $M$ is the pullback of an ample divisor of $A$. This function extends to a continuous function of $x\in \mathbb{R}$, which is differentiable except possibly at countably many points; when $X=T$ we compute the left derivative explicitly.
As an application, we give quick short proofs of a wide range of new Clifford–Severi inequalities, i.e., geographical bounds of the form
The aim of this paper is to construct Calabi–Yau 4-folds as crepant resolutions of the quotients of a hyperkähler 4-fold $X$ by a non-symplectic involution $\unicode[STIX]{x1D6FC}$. We first compute the Hodge numbers of a Calabi–Yau constructed in this way in a general setting, and then we apply the results to several specific examples of non-symplectic involutions, producing Calabi–Yau 4-folds with different Hodge diamonds. Then we restrict ourselves to the case where $X$ is the Hilbert scheme of two points on a K3 surface $S$, and the involution $\unicode[STIX]{x1D6FC}$ is induced by a non-symplectic involution on the K3 surface. In this case we compare the Calabi–Yau 4-fold $Y_{S}$, which is the crepant resolution of $X/\unicode[STIX]{x1D6FC}$, with the Calabi–Yau 4-fold $Z_{S}$, constructed from $S$ through the Borcea–Voisin construction. We give several explicit geometrical examples of both these Calabi–Yau 4-folds, describing maps related to interesting linear systems as well as a rational $2:1$ map from $Z_{S}$ to $Y_{S}$.
Conversely, Catanese (2017) inquires about what conditions need to be satisfied by a group of that sort in order to be the fundamental group of a Kodaira fibration. In this short note we collect some restrictions on the image of the classifying map $m \colon \Pi_b \to \Gamma_g$ in terms of the coinvariant homology of $\Pi_g$. In particular, we observe that if π is the fundamental group of a Kodaira fibration with relative irregularity g−s, then $g \leq 1+ 6s$, and we show that this effectively constrains the possible choices for π, namely that there are group extensions as above that fail to satisfy this bound, hence it cannot be the fundamental group of a Kodaira fibration. A noteworthy consequence of this construction is that it provides examples of symplectic 4-manifolds that fail to admit a Kähler structure for reasons that eschew the usual obstructions.
We give a bound on the H-constants of configurations of smooth curves having transversal intersection points only on an algebraic surface of non-negative Kodaira dimension. We also study in detail configurations of lines on smooth complete intersections $X \subset \mathbb{P}_{\mathbb{C}}^{n + 2}$ of multi-degree d = (d1, …, dn), and we provide a sharp and uniform bound on their H-constants, which only depends on d.
Let $Y$ be a complex Enriques surface whose universal cover $X$ is birational to a general quartic Hessian surface. Using the result on the automorphism group of $X$ due to Dolgachev and Keum, we obtain a finite presentation of the automorphism group of $Y$. The list of elliptic fibrations on $Y$ and the list of combinations of rational double points that can appear on a surface birational to $Y$ are presented. As an application, a set of generators of the automorphism group of the generic Enriques surface is calculated explicitly.
An intrinsic quadric is a normal projective variety with a Cox ring defined by a single quadratic relation. We provide explicit descriptions of these varieties in the smooth case for small Picard numbers. As applications, we figure out in this setting the Fano examples and (affirmatively) test Fujita’s freeness conjecture.
For a line arrangement ${\mathcal{A}}$ in the complex projective plane $\mathbb{P}^{2}$, we investigate the compactification $\overline{F}$ in $\mathbb{P}^{3}$ of the affine Milnor fiber $F$ and its minimal resolution $\tilde{F}$. We compute the Chern numbers of $\tilde{F}$ in terms of the combinatorics of the line arrangement ${\mathcal{A}}$. As applications of the computation of the Chern numbers, we show that the minimal resolution is never a quotient of a ball; in addition, we also prove that $\tilde{F}$ is of general type when the arrangement has only nodes or triple points as singularities. Finally, we compute all the Hodge numbers of some $\tilde{F}$ by using some knowledge about the Milnor fiber monodromy of the arrangement.
Given systems of two (inhomogeneous) quadratic equations in four variables, it is known that the Hasse principle for integral points may fail. Sometimes this failure can be explained by some integral Brauer–Manin obstruction. We study the existence of a non-trivial algebraic part of the Brauer group for a family of such systems and show that the failure of the integral Hasse principle due to an algebraic Brauer–Manin obstruction is rare, as for a generic choice of a system the algebraic part of the Brauer-group is trivial. We use resolvent constructions to give quantitative upper bounds on the number of exceptions.