To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the geometry underlying the difference between non-negative polynomials and sums of squares (SOS). The hypersurfaces that discriminate these two cones for ternary sextics and quaternary quartics are shown to be Noether–Lefschetz loci of K3 surfaces. The projective duals of these hypersurfaces are defined by rank constraints on Hankel matrices. We compute their degrees using numerical algebraic geometry, thereby verifying results due to Maulik and Pandharipande. The non-SOS extreme rays of the two cones of non-negative forms are parametrized, respectively, by the Severi variety of plane rational sextics and by the variety of quartic symmetroids.
We give bounds for the Betti numbers of projective algebraic varieties in terms of their classes (degrees of dual varieties of successive hyperplane sections). We also give bounds for classes in terms of ramification volumes (mixed ramification degrees), sectional genus and, eventually, in terms of dimension, codimension and degree. For varieties whose degree is large with respect to codimension, we give sharp bounds for the above invariants and classify the varieties on the boundary, thus obtaining a generalization of Castelnuovo’s theory for curves to varieties of higher dimension.
We introduce a strategy based on Kustin–Miller unprojection that allows us to construct many hundreds of Gorenstein codimension 4 ideals with 9×16 resolutions (that is, nine equations and sixteen first syzygies). Our two basic games are called Tom and Jerry; the main application is the biregular construction of most of the anticanonically polarised Mori Fano 3-folds of Altınok’s thesis. There are 115 cases whose numerical data (in effect, the Hilbert series) allow a Type I projection. In every case, at least one Tom and one Jerry construction works, providing at least two deformation families of quasismooth Fano 3-folds having the same numerics but different topology.
The S-fundamental group scheme is the group scheme corresponding to the Tannaka category of numerically flat vector bundles. We use determinant line bundles to prove that the S-fundamental group of a product of two complete varieties is a product of their S-fundamental groups as conjectured by Mehta and the author. We also compute the abelian part of the S-fundamental group scheme and the S-fundamental group scheme of an abelian variety or a variety with trivial étale fundamental group.
We consider a multi-parameter family of canonical coordinates and mirror maps originally introduced by Zudilin. This family includes many of the known one-variable mirror maps as special cases, in particular many of modular origin and the celebrated ‘quintic’ example of Candelas, de la Ossa, Green and Parkes. In a previous paper, we proved that all coefficients in the Taylor expansions at 0 of these canonical coordinates (and, hence, of the corresponding mirror maps) are integers. Here we prove that all coefficients in their Taylor expansions at 0 are positive. Furthermore, we provide several results about the behaviour of the canonical coordinates and mirror maps as complex functions. In particular, we address their analytic continuation, points of singularity, and radius of covergence. We present several very precise conjectures on the radius of covergence of the mirror maps and the sign pattern of the coefficients in their Taylor expansions at 0.
We test R. van Luijk’s method for computing the Picard group of a K3 surface. The examples considered are the resolutions of Kummer quartics in ℙ3. Using the theory of abelian varieties, the Picard group may be computed directly in this case. Our experiments show that the upper bounds provided by van Luijk’s method are sharp when sufficiently many primes are used. In fact, there are a lot of primes that yield a value close to the exact one. However, for many but not all Kummer surfaces V of Picard rank 18, we have for a set of primes of density at least 1/2.
An abelian cover is a finite morphism X→Y of varieties which is the quotient map for a generically faithful action of a finite abelian group G. Abelian covers with Y smooth and X normal were studied in [R. Pardini, Abelian covers of algebraic varieties, J. Reine Angew. Math. 417 (1991), 191–213; MR 1103912(92g:14012)]. Here we study the non-normal case, assuming that X and Y are S2 varieties that have at worst normal crossings outside a subset of codimension greater than or equal to two. Special attention is paid to the case of ℤr2-covers of surfaces, which is used in [V. Alexeev and R. Pardini, Explicit compactifications of moduli spaces of Campedelli and Burniat surfaces, Preprint (2009), math.AG/arXiv:0901.4431] to construct explicitly compactifications of some components of the moduli space of surfaces of general type.
It is well known that Thom–Boardman symbols are realized by nonincreasing sequences of nonnegative integers. A natural question is whether the converse is also true. In this paper we answer this question affirmatively, that is, for any nonincreasing sequence of nonnegative integers, there is at least one map-germ with the prescribed sequence as its Thom–Boardman symbol.
We prove that on separated algebraic surfaces every coherent sheaf is a quotient of a locally free sheaf. This class contains many schemes that are neither normal, reduced, quasiprojective nor embeddable into toric varieties. Our methods extend to arbitrary two-dimensional schemes that are proper over an excellent ring.
We consider a mirror symmetry between invertible weighted homogeneous polynomials in three variables. We define Dolgachev and Gabrielov numbers for them and show that we get a duality between these polynomials generalizing Arnold’s strange duality between the 14 exceptional unimodal singularities.
We provide certain unusual generalizations of Clausen's and Orr's theorems for solutions of fourth-order and fifth-order generalized hypergeometric equations. As an application, we present several examples of algebraic transformations of Calabi–Yau differential equations.
In this article we consider exceptional sequences of invertible sheaves on smooth complete rational surfaces. We show that to every such sequence one can associate a smooth complete toric surface in a canonical way. We use this structural result to prove various theorems on exceptional and strongly exceptional sequences of invertible sheaves on rational surfaces. We construct full strongly exceptional sequences for a large class of rational surfaces. For the case of toric surfaces we give a complete classification of full strongly exceptional sequences of invertible sheaves.
Following some remarks made by O'Grady and Oguiso, the potential density of rational points on the second punctual Hilbert scheme of certain K3 surfaces is proved.
We classify all the effective anticanonical divisors on weak del Pezzo surfaces. Through this classification we obtain the smallest number among the log canonical thresholds of effective anticanonical divisors on a given Gorenstein canonical del Pezzo surface.
In this article we study the transitivity of the group of automorphisms of real algebraic surfaces. We characterize real algebraic surfaces with very transitive automorphism groups. We give applications to the classification of real algebraic models of compact surfaces: these applications yield new insight into the geometry of the real locus, proving several surprising facts on this geometry. This geometry can be thought of as a half-way point between the biregular and birational geometries.
We study Cox rings of K3 surfaces. A first result is that a K3 surface has a finitely generated Cox ring if and only if its effective cone is rational polyhedral. Moreover, we investigate degrees of generators and relations for Cox rings of K3 surfaces of Picard number two, and explicitly compute the Cox rings of generic K3 surfaces with a non-symplectic involution that have Picard number 2 to 5 or occur as double covers of del Pezzo surfaces.
A foliation on a non-singular projective variety is algebraically integrable if all leaves are algebraic subvarieties. A non-singular hypersurface X in a non-singular projective variety M equipped with a symplectic form has a naturally defined foliation, called the characteristic foliation on X. We show that if X is of general type and dim M≥4, then the characteristic foliation on X cannot be algebraically integrable. This is a consequence of a more general result on Iitaka dimensions of certain invertible sheaves associated with algebraically integrable foliations by curves. The latter is proved using the positivity of direct image sheaves associated to families of curves.
We study the moduli spaces of polarised irreducible symplectic manifolds. By a comparison with locally symmetric varieties of orthogonal type of dimension 20, we show that the moduli space of polarised deformation K3[2] manifolds with polarisation of degree 2d and split type is of general type if d≥12.
If C is a curve of genus 2 defined over a field k and J is its Jacobian, then we can associate a hypersurface K in ℙ3 to J, called the Kummer surface of J. Flynn has made this construction explicit in the case when the characteristic of k is not 2 and C is given by a simplified equation. He has also given explicit versions of several maps defined on the Kummer surface and shown how to perform arithmetic on J using these maps. In this paper we generalize these results to the case of arbitrary characteristic.
We show that polarized endomorphisms of rationally connected threefolds with at worst terminal singularities are equivariantly built up from those on ℚ-Fano threefolds, Gorenstein log del Pezzo surfaces and ℙ1. Similar results are obtained for polarized endomorphisms of uniruled threefolds and fourfolds. As a consequence, we show that every smooth Fano threefold with a polarized endomorphism of degree greater than one is rational.