To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We give an equivalent definition of the local volume of an isolated singularity $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}{\rm Vol}_{\text {BdFF}}(X,0)$ given in [S. Boucksom, T. de Fernex, C. Favre, The volume of an isolated singularity. Duke Math. J. 161 (2012), 1455–1520] in the $\mathbb{Q}$-Gorenstein case and we generalize it to the non-$\mathbb{Q}$-Gorenstein case. We prove that there is a positive lower bound depending only on the dimension for the non-zero local volume of an isolated singularity if $X$ is Gorenstein. We also give a non-$\mathbb{Q}$-Gorenstein example with ${\rm Vol}_{\text {BdFF}}(X,0)=0$, which does not allow a boundary $\Delta $ such that the pair $(X,\Delta )$ is log canonical.
We show that the algebraic local fundamental group of any Kawamata log terminal singularity as well as the algebraic fundamental group of the smooth locus of any log Fano variety are finite.
We show that a standard conic bundle over a minimal rational surface is rational and its Jacobian splits as the direct sum of Jacobians of curves if and only if its derived category admits a semiorthogonal decomposition by exceptional objects and the derived categories of those curves. Moreover, such a decomposition gives the splitting of the intermediate Jacobian also when the surface is not minimal.
The purpose of this paper is twofold. We present first a vanishing theorem for families of linear series with base ideal being a fat points ideal. We then apply this result in order to give a partial proof of a conjecture raised by Bocci, Harbourne and Huneke concerning containment relations between ordinary and symbolic powers of planar point ideals.
We study the moduli space of a product of stable varieties over the field of complex numbers, as defined via the minimal model program. Our main results are: (a) taking products gives a well-defined morphism from the product of moduli spaces of stable varieties to the moduli space of a product of stable varieties; (b) this map is always finite étale; and (c) this map very often is an isomorphism. Our results generalize and complete the work of Van Opstall in dimension $1$. The local results rely on a study of the cotangent complex using some derived algebro-geometric methods, while the global ones use some differential-geometric input.
In their paper [Exceptional sequences of invertible sheaves on rational surfaces, Compositio Math. 147 (2011), 1230–1280], Hille and Perling associate to every cyclic full strongly exceptional sequence of line bundles on a toric weak del Pezzo surface a toric system, which defines a new toric surface. We interpret this construction as an instance of mirror symmetry and extend it to a duality on the set of toric weak del Pezzo surfaces equipped with a cyclic full strongly exceptional sequence.
In this paper we prove that surfaces of general type with irregularity $q\geq 3$ are rationally cohomologically rigidified, and so are minimal surfaces $S$ with $q(S)= 2$ unless ${ K}_{S}^{2} = 8\chi ({ \mathcal{O} }_{S} )$. Here a surface $S$ is said to be rationally cohomologically rigidified if its automorphism group $\mathrm{Aut} (S)$ acts faithfully on the cohomology ring ${H}^{\ast } (S, \mathbb{Q} )$. As examples we give a complete classification of surfaces isogenous to a product with $q(S)= 2$ that are not rationally cohomologically rigidified.
We consider the 33 conjugacy classes of genus zero, torsion-free modular subgroups, computing ramification data and Grothendieck’s dessins d’enfants. In the particular case of the index 36 subgroups, the corresponding Calabi–Yau threefolds are identified, in analogy with the index 24 cases being associated to K3 surfaces. In a parallel vein, we study the 112 semi-stable elliptic fibrations over ${ \mathbb{P} }^{1} $ as extremal K3 surfaces with six singular fibres. In each case, a representative of the corresponding class of subgroups is identified by specifying a generating set for that representative.
Given an intersection of two quadrics $X\subset { \mathbb{P} }^{m- 1} $, with $m\geq 9$, the quantitative arithmetic of the set $X( \mathbb{Q} )$ is investigated under the assumption that the singular locus of $X$ consists of a pair of conjugate singular points defined over $ \mathbb{Q} (i)$.
For a characteristic-$p\gt 0$ variety $X$ with controlled $F$-singularities, we state conditions which imply that a divisorial sheaf is Cohen–Macaulay or at least has depth $\geq $3 at certain points. This mirrors results of Kollár for varieties in characteristic 0. As an application, we show that relative canonical sheaves are compatible with arbitrary base change for certain families with sharply $F$-pure fibers.
We determine the structure of the Hodge ring, a natural object encoding the Hodge numbers of all compact Kähler manifolds. As a consequence of this structure, there are no unexpected relations among the Hodge numbers, and no essential differences between the Hodge numbers of smooth complex projective varieties and those of arbitrary Kähler manifolds. The consideration of certain natural ideals in the Hodge ring allows us to determine exactly which linear combinations of Hodge numbers are birationally invariant, and which are topological invariants. Combining the Hodge and unitary bordism rings, we are also able to treat linear combinations of Hodge and Chern numbers. In particular, this leads to a complete solution of a classical problem of Hirzebruch’s.
We prove the standard conjectures for complex projective varieties that are deformations of the Hilbert scheme of points on a K3 surface. The proof involves Verbitsky’s theory of hyperholomorphic sheaves and a study of the cohomology algebra of Hilbert schemes of K3 surfaces.
We study the geometry underlying the difference between non-negative polynomials and sums of squares (SOS). The hypersurfaces that discriminate these two cones for ternary sextics and quaternary quartics are shown to be Noether–Lefschetz loci of K3 surfaces. The projective duals of these hypersurfaces are defined by rank constraints on Hankel matrices. We compute their degrees using numerical algebraic geometry, thereby verifying results due to Maulik and Pandharipande. The non-SOS extreme rays of the two cones of non-negative forms are parametrized, respectively, by the Severi variety of plane rational sextics and by the variety of quartic symmetroids.
We give bounds for the Betti numbers of projective algebraic varieties in terms of their classes (degrees of dual varieties of successive hyperplane sections). We also give bounds for classes in terms of ramification volumes (mixed ramification degrees), sectional genus and, eventually, in terms of dimension, codimension and degree. For varieties whose degree is large with respect to codimension, we give sharp bounds for the above invariants and classify the varieties on the boundary, thus obtaining a generalization of Castelnuovo’s theory for curves to varieties of higher dimension.
We introduce a strategy based on Kustin–Miller unprojection that allows us to construct many hundreds of Gorenstein codimension 4 ideals with 9×16 resolutions (that is, nine equations and sixteen first syzygies). Our two basic games are called Tom and Jerry; the main application is the biregular construction of most of the anticanonically polarised Mori Fano 3-folds of Altınok’s thesis. There are 115 cases whose numerical data (in effect, the Hilbert series) allow a Type I projection. In every case, at least one Tom and one Jerry construction works, providing at least two deformation families of quasismooth Fano 3-folds having the same numerics but different topology.
The S-fundamental group scheme is the group scheme corresponding to the Tannaka category of numerically flat vector bundles. We use determinant line bundles to prove that the S-fundamental group of a product of two complete varieties is a product of their S-fundamental groups as conjectured by Mehta and the author. We also compute the abelian part of the S-fundamental group scheme and the S-fundamental group scheme of an abelian variety or a variety with trivial étale fundamental group.
We consider a multi-parameter family of canonical coordinates and mirror maps originally introduced by Zudilin. This family includes many of the known one-variable mirror maps as special cases, in particular many of modular origin and the celebrated ‘quintic’ example of Candelas, de la Ossa, Green and Parkes. In a previous paper, we proved that all coefficients in the Taylor expansions at 0 of these canonical coordinates (and, hence, of the corresponding mirror maps) are integers. Here we prove that all coefficients in their Taylor expansions at 0 are positive. Furthermore, we provide several results about the behaviour of the canonical coordinates and mirror maps as complex functions. In particular, we address their analytic continuation, points of singularity, and radius of covergence. We present several very precise conjectures on the radius of covergence of the mirror maps and the sign pattern of the coefficients in their Taylor expansions at 0.
We test R. van Luijk’s method for computing the Picard group of a K3 surface. The examples considered are the resolutions of Kummer quartics in ℙ3. Using the theory of abelian varieties, the Picard group may be computed directly in this case. Our experiments show that the upper bounds provided by van Luijk’s method are sharp when sufficiently many primes are used. In fact, there are a lot of primes that yield a value close to the exact one. However, for many but not all Kummer surfaces V of Picard rank 18, we have for a set of primes of density at least 1/2.
An abelian cover is a finite morphism X→Y of varieties which is the quotient map for a generically faithful action of a finite abelian group G. Abelian covers with Y smooth and X normal were studied in [R. Pardini, Abelian covers of algebraic varieties, J. Reine Angew. Math. 417 (1991), 191–213; MR 1103912(92g:14012)]. Here we study the non-normal case, assuming that X and Y are S2 varieties that have at worst normal crossings outside a subset of codimension greater than or equal to two. Special attention is paid to the case of ℤr2-covers of surfaces, which is used in [V. Alexeev and R. Pardini, Explicit compactifications of moduli spaces of Campedelli and Burniat surfaces, Preprint (2009), math.AG/arXiv:0901.4431] to construct explicitly compactifications of some components of the moduli space of surfaces of general type.
It is well known that Thom–Boardman symbols are realized by nonincreasing sequences of nonnegative integers. A natural question is whether the converse is also true. In this paper we answer this question affirmatively, that is, for any nonincreasing sequence of nonnegative integers, there is at least one map-germ with the prescribed sequence as its Thom–Boardman symbol.