To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove that on separated algebraic surfaces every coherent sheaf is a quotient of a locally free sheaf. This class contains many schemes that are neither normal, reduced, quasiprojective nor embeddable into toric varieties. Our methods extend to arbitrary two-dimensional schemes that are proper over an excellent ring.
We consider a mirror symmetry between invertible weighted homogeneous polynomials in three variables. We define Dolgachev and Gabrielov numbers for them and show that we get a duality between these polynomials generalizing Arnold’s strange duality between the 14 exceptional unimodal singularities.
We provide certain unusual generalizations of Clausen's and Orr's theorems for solutions of fourth-order and fifth-order generalized hypergeometric equations. As an application, we present several examples of algebraic transformations of Calabi–Yau differential equations.
In this article we consider exceptional sequences of invertible sheaves on smooth complete rational surfaces. We show that to every such sequence one can associate a smooth complete toric surface in a canonical way. We use this structural result to prove various theorems on exceptional and strongly exceptional sequences of invertible sheaves on rational surfaces. We construct full strongly exceptional sequences for a large class of rational surfaces. For the case of toric surfaces we give a complete classification of full strongly exceptional sequences of invertible sheaves.
Following some remarks made by O'Grady and Oguiso, the potential density of rational points on the second punctual Hilbert scheme of certain K3 surfaces is proved.
We classify all the effective anticanonical divisors on weak del Pezzo surfaces. Through this classification we obtain the smallest number among the log canonical thresholds of effective anticanonical divisors on a given Gorenstein canonical del Pezzo surface.
In this article we study the transitivity of the group of automorphisms of real algebraic surfaces. We characterize real algebraic surfaces with very transitive automorphism groups. We give applications to the classification of real algebraic models of compact surfaces: these applications yield new insight into the geometry of the real locus, proving several surprising facts on this geometry. This geometry can be thought of as a half-way point between the biregular and birational geometries.
We study Cox rings of K3 surfaces. A first result is that a K3 surface has a finitely generated Cox ring if and only if its effective cone is rational polyhedral. Moreover, we investigate degrees of generators and relations for Cox rings of K3 surfaces of Picard number two, and explicitly compute the Cox rings of generic K3 surfaces with a non-symplectic involution that have Picard number 2 to 5 or occur as double covers of del Pezzo surfaces.
A foliation on a non-singular projective variety is algebraically integrable if all leaves are algebraic subvarieties. A non-singular hypersurface X in a non-singular projective variety M equipped with a symplectic form has a naturally defined foliation, called the characteristic foliation on X. We show that if X is of general type and dim M≥4, then the characteristic foliation on X cannot be algebraically integrable. This is a consequence of a more general result on Iitaka dimensions of certain invertible sheaves associated with algebraically integrable foliations by curves. The latter is proved using the positivity of direct image sheaves associated to families of curves.
We study the moduli spaces of polarised irreducible symplectic manifolds. By a comparison with locally symmetric varieties of orthogonal type of dimension 20, we show that the moduli space of polarised deformation K3[2] manifolds with polarisation of degree 2d and split type is of general type if d≥12.
If C is a curve of genus 2 defined over a field k and J is its Jacobian, then we can associate a hypersurface K in ℙ3 to J, called the Kummer surface of J. Flynn has made this construction explicit in the case when the characteristic of k is not 2 and C is given by a simplified equation. He has also given explicit versions of several maps defined on the Kummer surface and shown how to perform arithmetic on J using these maps. In this paper we generalize these results to the case of arbitrary characteristic.
We show that polarized endomorphisms of rationally connected threefolds with at worst terminal singularities are equivariantly built up from those on ℚ-Fano threefolds, Gorenstein log del Pezzo surfaces and ℙ1. Similar results are obtained for polarized endomorphisms of uniruled threefolds and fourfolds. As a consequence, we show that every smooth Fano threefold with a polarized endomorphism of degree greater than one is rational.
We classify del Pezzo surfaces with quotient singularities and Picard rank one which admit a ℚ-Gorenstein smoothing. These surfaces arise as singular fibres of del Pezzo fibrations in the 3-fold minimal model program and also in moduli problems.
Given a normal variety Z, a p-form σ defined on the smooth locus of Z and a resolution of singularities , we study the problem of extending the pull-back π*(σ) over the π-exceptional set . For log canonical pairs and for certain values of p, we show that an extension always exists, possibly with logarithmic poles along E. As a corollary, it is shown that sheaves of reflexive differentials enjoy good pull-back properties. A natural generalization of the well-known Bogomolov–Sommese vanishing theorem to log canonical threefold pairs follows.
According to our previous results, the conjugacy class of the involution induced by the complex conjugation in the homology of a real non-singular cubic fourfold determines the fourfold up to projective equivalence and deformation. Here, we show how to eliminate the projective equivalence and obtain a pure deformation classification, that is, how to respond to the chirality problem: which cubics are not deformation equivalent to their image under a mirror reflection. We provide an arithmetical criterion of chirality, in terms of the eigen-sublattices of the complex conjugation involution in homology, and show how this criterion can be effectively applied taking as examples M-cubics (that is, those for which the real locus has the richest topology) and (M−1)-cubics (the next case with respect to complexity of the real locus). It happens that there is one chiral class of M-cubics and three chiral classes of (M−1)-cubics, in contrast to two achiral classes of M-cubics and three achiral classes of (M−1)-cubics.
We describe equations of the universal torsors over del Pezzo surfaces of degrees from 2 to 5 over an algebraically closed field in terms of the equations of the corresponding homogeneous space G/P. We also give a generalization for fields that are not algebraically closed.
We study the birational geometry of irreducible holomorphic symplectic varieties arising as varieties of lines of general cubic fourfolds containing a cubic scroll. We compute the ample and moving cones, and exhibit a birational automorphism of infinite order explaining the chamber decomposition of the moving cone.
In this paper we generalize the definitions of singularities of pairs and multiplier ideal sheaves to pairs on arbitrary normal varieties, without any assumption on the variety being ℚ-Gorenstein or the pair being log ℚ-Gorenstein. The main features of the theory extend to this setting in a natural way.
The theorem referred to in the title is a technical result that is needed for the classification of elliptic and K3 fibrations birational to Fano 3-fold hypersurfaces in weighted projective space. We present a complete proof of the curve exclusion theorem, which first appeared in the author's PhD thesis and has since been relied upon in solutions to many cases of the fibration classification problem. We give examples of these solutions and discuss them briefly.
In this paper we consider the dynamical system involved by the Ricci operator on the space of Kähler metrics of a Fano manifold. Nadel has defined an iteration scheme given by the Ricci operator and asked whether it has some non-trivial periodic points. First, we prove that no such periodic points can exist. We define the inverse of the Ricci operator and consider the dynamical behaviour of its iterates for a Fano Kähler–Einstein manifold. Then we define a finite-dimensional procedure to give an approximation of Kähler–Einstein metrics using this iterative procedure and apply it on ℂℙ2 blown up in three points.