We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For $N\geq 2$, a bounded smooth domain $\Omega$ in $\mathbb {R}^{N}$, and $g_0,\, V_0 \in L^{1}_{loc}(\Omega )$, we study the optimization of the first eigenvalue for the following weighted eigenvalue problem:
\[ -\Delta_p \phi + V |\phi|^{p-2}\phi = \lambda g |\phi|^{p-2}\phi \text{ in } \Omega, \quad \phi=0 \text{ on } \partial \Omega, \]
where $g$ and $V$ vary over the rearrangement classes of $g_0$ and $V_0$, respectively. We prove the existence of a minimizing pair $(\underline {g},\,\underline {V})$ and a maximizing pair $(\overline {g},\,\overline {V})$ for $g_0$ and $V_0$ lying in certain Lebesgue spaces. We obtain various qualitative properties such as polarization invariance, Steiner symmetry of the minimizers as well as the associated eigenfunctions for the case $p=2$. For annular domains, we prove that the minimizers and the corresponding eigenfunctions possess the foliated Schwarz symmetry.
We obtain a measure representation for a functional arising in the context of optimal design problems under linear growth conditions. The functional in question corresponds to the relaxation with respect to a pair $(\chi,u)$, where $\chi$ is the characteristic function of a set of finite perimeter and $u$ is a function of bounded deformation, of an energy with a bulk term depending on the symmetrized gradient as well as a perimeter term.
We study the $\Gamma$-convergence of nonconvex vectorial integral functionals whose integrands satisfy possibly degenerate growth and coercivity conditions. The latter involve suitable scale-dependent weight functions. We prove that under appropriate uniform integrability conditions on the weight functions, which shall belong to a Muckenhoupt class, the corresponding functionals $\Gamma$-converge, up to subsequences, to a degenerate integral functional defined on a limit weighted Sobolev space. The general analysis is then applied to the case of random stationary integrands and weights to prove a stochastic homogenization result for the corresponding functionals.
In this work we derive by $\Gamma$-convergence techniques a model for brittle fracture linearly elastic plates. Precisely, we start from a brittle linearly elastic thin film with positive thickness $\rho$ and study the limit as $\rho$ tends to $0$. The analysis is performed with no a priori restrictions on the admissible displacements and on the geometry of the fracture set. The limit model is characterized by a Kirchhoff-Love type of structure.
In this paper, we establish a Kantorovich duality for unbalanced optimal total variation transport problems. As consequences, we recover a version of duality formula for partial optimal transports established by Caffarelli and McCann; and we also get another proof of Kantorovich–Rubinstein theorem for generalized Wasserstein distance $\widetilde {W}_1^{a,b}$ proved before by Piccoli and Rossi. Then we apply our duality formula to study generalized Wasserstein barycenters. We show the existence of these barycenters for measures with compact supports. Finally, we prove the consistency of our barycenters.
We extend previous weak well-posedness results obtained in Frigeri et al. (2017, Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs, Vol. 22, Springer, Cham, pp. 217–254) concerning a non-local variant of a diffuse interface tumour model proposed by Hawkins-Daarud et al. (2012, Int. J. Numer. Method Biomed. Engng.28, 3–24). The model consists of a non-local Cahn–Hilliard equation with degenerate mobility and singular potential for the phase field variable, coupled to a reaction–diffusion equation for the concentration of a nutrient. We prove the existence of strong solutions to the model and establish some high-order continuous dependence estimates, even in the presence of concentration-dependent mobilities for the nutrient variable in two spatial dimensions. Then, we apply the new regularity results to study an inverse problem identifying the initial tumour distribution from measurements at the terminal time. Formulating the Tikhonov regularised inverse problem as a constrained minimisation problem, we establish the existence of minimisers and derive first-order necessary optimality conditions.
Let
$\boldsymbol{f}$
be a square-integrable, zero-mean, random vector with observable realizations in a Hilbert space H, and let
$\boldsymbol{g}$
be an associated square-integrable, zero-mean, random vector with realizations which are not observable in a Hilbert space K. We seek an optimal filter in the form of a closed linear operator X acting on the observable realizations of a proximate vector
$\boldsymbol{f}_{\epsilon } \approx \boldsymbol{f}$
that provides the best estimate
$\widehat{\boldsymbol{g}}_{\epsilon} = X \boldsymbol{f}_{\epsilon}$
of the vector
$\boldsymbol{g}$
. We assume the required covariance operators are known. The results are illustrated with a typical example.
Starting from three-dimensional non-linear elasticity under the restriction of incompressibility, we derive reduced models to capture the behaviour of strings in response to external forces. Our Γ-convergence analysis of the constrained energy functionals in the limit of shrinking cross-sections gives rise to explicit one-dimensional limit energies. The latter depend on the scaling of the applied forces. The effect of local volume preservation is reflected either in their energy densities through a constrained minimization over the cross-section variables or in the class of admissible deformations. Interestingly, all scaling regimes allow for compression and/or stretching of the string. The main difficulty in the proof of the Γ-limit is to establish recovery sequences that accommodate the non-linear differential constraint imposed by the incompressibility. To this end, we modify classical constructions in the unconstrained case with the help of an inner perturbation argument tailored for 3d-1d dimension reduction problems.
In this paper we give sufficient conditions to obtain continuity results of solutions for the so called ϕ-Laplacian Δϕ with respect to domain perturbations. We point out that this kind of results can be extended to a more general class of operators including, for instance, nonlocal nonstandard growth type operators.
The asymptotic behavior of solutions to a family of Dirichlet boundary value problems, involving differential operators in divergence form, on a domain equipped with a Finsler metric is investigated. Solutions are shown to converge uniformly to the distance function to the boundary of the domain, which takes into account the Finsler norm involved in the equation. This implies that a well-known result in the analysis of problems modeling torsional creep continues to hold in this more general setting.
Assignment flows denote a class of dynamical models for contextual data labelling (classification) on graphs. We derive a novel parametrisation of assignment flows that reveals how the underlying information geometry induces two processes for assignment regularisation and for gradually enforcing unambiguous decisions, respectively, that seamlessly interact when solving for the flow. Our result enables to characterise the dominant part of the assignment flow as a Riemannian gradient flow with respect to the underlying information geometry. We consider a continuous-domain formulation of the corresponding potential and develop a novel algorithm in terms of solving a sequence of linear elliptic partial differential equations (PDEs) subject to a simple convex constraint. Our result provides a basis for addressing learning problems by controlling such PDEs in future work.
Under suitable assumptions on the family of anisotropies, we prove the existence of a weak global 1/(n+1)-Hölder continuous in time mean curvature flow with mobilities of a bounded anisotropic partition in any dimension using the method of minimizing movements. The result is extended to the case when suitable driving forces are present. We improve the Hölder exponent to 1/2 in the case of partitions with the same anisotropy and the same mobility and provide a weak comparison result in this setting for a weak anisotropic mean curvature flow of a partition and an anisotropic mean curvature two-phase flow.
This work, motivated by the rapid developments in Micro-Electro-Mechanical Systems (MEMS) structures, especially actuators and grippers, analyses the dynamics of a thermo-mechanical system consisting of a horizontal beam joined at one end to a vertical rod. As a result of thermal expansion or vibration of the rod, the other end may come into contact with another part of the MEMS device and that closes an electrical circuit, which is the actuating or switching function of such a beam–rod system. The interaction between the rod's contacting end and the supporting device is described by a normal compliance contact law for the displacements and by an inclusion-type Barber's heat exchange condition for the temperature. The heat-exchange coefficient is a multi-function taking into account the air resistance in the gap when there is no contact and the contact pressure when contact occurs. The model consists of a nonlinear variational inclusion for the temperature coupled with a nonlinear variational equation for the displacements. The existence of a weak solution to the problem is proved by using the Galerkin method, a regularization of Barber's condition with the Yosida approximation of a maximal monotone operator, and a priori estimates.
We consider the mass-critical non-linear Schrödinger equation on non-compact metric graphs. A quite complete description of the structure of the ground states, which correspond to global minimizers of the energy functional under a mass constraint, is provided by Adami, Serra and Tilli in [R. Adami, E. Serra and P. Tilli. Negative energy ground states for the L2-critical NLSE on metric graphs. Comm. Math. Phys. 352 (2017), 387–406.] , where it is proved that existence and properties of ground states depend in a crucial way on both the value of the mass, and the topological properties of the underlying graph. In this paper we address cases when ground states do not exist and show that, under suitable assumptions, constrained local minimizers of the energy do exist. This result paves the way to the existence of stable solutions in the time-dependent equation in cases where the ground state energy level is not achieved.
This paper concerns with the existence of multiple solutions for a class of elliptic problems with discontinuous nonlinearity. By using dual variational methods, properties of the Nehari manifolds and Ekeland's variational principle, we show how the ‘shape’ of the graph of the function A affects the number of nontrivial solutions.
depending on the growth and shape of the integrand f. Such functionals are interesting, for example, in the study of Hencky plasticity and related models.
We show that the spectrum of the relativistic mean curvature operator on a bounded domain Ω ⊂ ℝN (N ⩾ 1) having smooth boundary, subject to the homogeneous Dirichlet boundary condition, is exactly the interval (λ1(2), ∞), where λ1(2) stands for the principal frequency of the Laplace operator in Ω.
This paper is devoted to the study of the normal (tangential) regularity of a closed set and the subdifferential (directional) regularity of its distance function in the context of Riemannian manifolds. The Clarke, Fréchet and proximal subdifferentials of the distance function from a closed subset in a Riemannian manifold are represented by corresponding normal cones of the set.
The aim of the paper is to introduce and investigate a dynamical system which consists of a variational–hemivariational inequality of hyperbolic type combined with a non-linear evolution equation. Such a dynamical system arises in studies of complicated contact problems in mechanics. Existence, uniqueness and regularity of a global solution to the system are established. The approach is based on a new semi-discrete approximation with an application of a surjectivity result for a pseudomonotone perturbation of a maximal monotone operator. A new dynamic viscoelastic frictional contact model with adhesion is studied as an application, in which the contact boundary condition is described by a generalised normal damped response condition with unilateral constraint and a multivalued frictional contact law.