To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present a high-order upwind finite volume element method to solve optimal control problems governed by first-order hyperbolic equations. The method is efficient and easy for implementation. Both the semi-discrete error estimates and the fully discrete error estimates are derived. Optimal order error estimates in the sense of $L^{2}$-norm are obtained. Numerical examples are provided to confirm the effectiveness of the method and the theoretical results.
In this work, we develop an adaptive algorithm for solving elliptic optimal control problems with simultaneously appearing state and control constraints. The algorithm combines a Moreau-Yosida technique for handling state constraints with a semi-smooth Newton method for solving the optimality systems of the regularized sub-problems. The state and adjoint variables are discretized using continuous piecewise linear finite elements while a variational discretization concept is applied for the control. To perform the adaptive mesh refinements cycle we derive local error estimators which extend the goal-oriented error approach to our setting. The performance of the overall adaptive solver is assessed by numerical examples.
We discuss a control problem involving a stochastic Burgers equation with a random diffusion coefficient. Numerical schemes are developed, involving the finite element method for the spatial discretisation and the sparse grid stochastic collocation method in the random parameter space. We also use these schemes to compute closed-loop suboptimal state feedback control. Several numerical experiments are performed, to demonstrate the efficiency and plausibility of our approximation methods for the stochastic Burgers equation and the related control problem.
In this paper, we investigate the Galerkin spectral approximation for elliptic control problems with integral control and state constraints. Firstly, an a posteriori error estimator is established,which can be acted as the equivalent indicatorwith explicit expression. Secondly, appropriate base functions of the discrete spacesmake it is probable to solve the discrete system. Numerical test indicates the reliability and efficiency of the estimator, and shows the proposed method is competitive for this class of control problems. These discussions can certainly be extended to two- and three-dimensional cases.
In this paper, we introduce and study a new method for solving inverse source problems, through a working model that arises in bioluminescence tomography (BLT). In the BLT problem, one constructs quantitatively the bioluminescence source distribution inside a small animal from optical signals detected on the animal's body surface. The BLT problem possesses strong ill-posedness and often the Tikhonov regularization is used to obtain stable approximate solutions. In conventional Tikhonov regularization, it is crucial to choose a proper regularization parameter for trade off between the accuracy and stability of approximate solutions. The new method is based on a combination of the boundary condition and the boundary measurement in a parameter-dependent single complex Robin boundary condition, followed by the Tikhonov regularization. By properly adjusting the parameter in the Robin boundary condition, we achieve two important properties for our new method: first, the regularized solutions are uniformly stable with respect to the regularization parameter so that the regularization parameter can be chosen based solely on the consideration of the solution accuracy; second, the convergence order of the regularized solutions reaches one with respect to the noise level. Then, the finite element method is used to compute numerical solutions and a new finite element error estimate is derived for discrete solutions. These results improve related results found in the existing literature. Several numerical examples are provided to illustrate the theoretical results.
Lower semi-continuity results for polyconvex functionals of the calculus of variations along sequences of maps u: Ω ⊂ ℝn → ℝm in W1,m, 2 ⩽ m⩽ n, weakly converging in W1,m-1, are established. In addition, for m = n + 1, we also consider the autonomous case for weakly converging maps in W1,n-1.
We investigate the interplay between the local and asymptotic geometry of a set $A\subseteq \mathbb{R}^{n}$ and the geometry of model sets ${\mathcal{S}}\subset {\mathcal{P}}(\mathbb{R}^{n})$, which approximate $A$ locally uniformly on small scales. The framework for local set approximation developed in this paper unifies and extends ideas of Jones, Mattila and Vuorinen, Reifenberg, and Preiss. We indicate several applications of this framework to variational problems that arise in geometric measure theory and partial differential equations. For instance, we show that the singular part of the support of an $(n-1)$-dimensional asymptotically optimally doubling measure in $\mathbb{R}^{n}$ ($n\geqslant 4$) has upper Minkowski dimension at most $n-4$.
This paper deals with boundary optimal control problems for the heat and Navier-Stokes equations and addresses the issue of defining controls in function spaces which are naturally associated to the volume variables by trace restriction. For this reason we reformulate the boundary optimal control problem into a distributed problem through a lifting function approach. The stronger regularity requirements which are imposed by standard boundary control approaches can then be avoided. Furthermore, we propose a new numerical strategy that allows to solve the coupled optimality system in a robust way for a large number of unknowns. The optimality system resulting from a finite element discretization is solved by a local multigrid algorithm with domain decomposition Vanka-type smoothers. The purpose of these smoothers is to solve the optimality system implicitly over subdomains with a small number of degrees of freedom, in order to achieve robustness with respect to the regularization parameters in the cost functional. We present the results of some test cases where temperature is the observed quantity and the control quantity corresponds to the boundary values of the fluid temperature in a portion of the boundary. The control region for the observed quantity is a part of the domain where it is interesting to match a desired temperature value.
In this paper, we give some Łojasiewicz-type inequalities for continuous definable functions in an o-minimal structure. We also give a necessary and sufficient condition for the existence of a global error bound and the relationship between the Palais–Smale condition and this global error bound. Moreover, we give a Łojasiewicz nonsmooth gradient inequality at infinity near the fibre for continuous definable functions in an o-minimal structure.
The asymptotic behaviour of inhomogeneous power-law type functionals is undertaken via De Giorgi’s Γ-convergence. Our results generalize recent work dealing with the asymptotic behaviour of power-law functionals acting on fields belonging to variable exponent Lebesgue and Sobolev spaces to the Orlicz–Sobolev setting.
We consider infinite-horizon optimal control problems. The main idea is to convert the problem into an equivalent finite-horizon nonlinear optimal control problem. The resulting problem is then solved by means of a direct method using Haar wavelets. A local property of Haar wavelets is applied to simplify the calculation process. The accuracy of the present method is demonstrated by two illustrative examples.
We present an efficient computational procedure for the solution of bang–bang optimal control problems. The method is based on a well-known adaptive control parametrization method, which is one of the direct methods for numerical solution of optimal control problems. First, the adaptive control parametrization method is reviewed and then its advantages and disadvantages are illustrated. In order to resolve the need for a priori knowledge about the structure of optimal control and for resolving the sensitivity to an initial guess, a homotopy continuation technique is combined with the adaptive control parametrization method. The present combined method does not require any assumptions on the control structure and the number of switching points. In addition, the switching points are captured accurately; also, efficiency of the method is reported through illustrative examples.
We introduce a ‘double’ version of Γ-convergence, which we have named ‘double Γ-convergence’, and apply it to obtain the Γ-limit of double-perturbed energy functionals as p → 1 and p → +∞, respectively. The limit of (p, q)-type capacity as p → 1 and p → +∞, respectively, is also obtained in this manner.
In this paper, we prove that if $X$ is an infinite-dimensional real Hilbert space and $J: X\rightarrow \mathbb{R} $ is a sequentially weakly lower semicontinuous ${C}^{1} $ functional whose Gâteaux derivative is non-expansive, then there exists a closed ball $B$ in $X$ such that $(\mathrm{id} + {J}^{\prime } )(B)$ intersects every convex and dense subset of $X$.
We consider a bilinear optimal control problem for a von Kármán plate equation. The control is a function of the spatial variables and acts as a multiplier of the velocity term. We first state the existence of solutions for the von Kármán equation and then derive optimality conditions for a given objective functional. Finally, we show the uniqueness of the optimal control.
In this paper we study optimal control computation based on the control parameterization method for a class of optimal control problems involving nonlinear systems with multiple time delays subject to continuous state inequality constraints. Both the state and the control are allowed to have different time delays, and they are uncorrelated in this system. The control of the dynamical system is approximated by a piecewise constant function whose heights are taken as decision vectors. The formulae for computing the gradients of the cost and constraint functions are then derived. Based on this, a computational method for finding the optimal control is developed by utilizing the Sequential Quadratic Programming (SQP) algorithm with an active set strategy. The computational method is applied to an industrial problem arising in the purification process of zinc hydrometallurgy. Numerical simulation shows that the amount of zinc powder that is needed can be decreased significantly, thus avoiding wastage of resources.