To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
An old conjecture of Z. Tuza says that for any graph G, the ratio of the minimum size, τ3(G), of a set of edges meeting all triangles to the maximum size, ν3(G), of an edge-disjoint triangle packing is at most 2. Here, disproving a conjecture of R. Yuster, we show that for any fixed, positive α there are arbitrarily large graphs G of positive density satisfying τ3(G) > (1 − o(1))|G|/2 and ν3(G) < (1 + α)|G|/4.
We give several results showing that different discrete structures typically gain certain spanning substructures (in particular, Hamilton cycles) after a modest random perturbation. First, we prove that adding linearly many random edges to a dense k-uniform hypergraph ensures the (asymptotically almost sure) existence of a perfect matching or a loose Hamilton cycle. The proof involves an interesting application of Szemerédi's Regularity Lemma, which might be independently useful. We next prove that digraphs with certain strong expansion properties are pancyclic, and use this to show that adding a linear number of random edges typically makes a dense digraph pancyclic. Finally, we prove that perturbing a certain (minimum-degree-dependent) number of random edges in a tournament typically ensures the existence of multiple edge-disjoint Hamilton cycles. All our results are tight.
The 3-uniform tight cycle Cs3 has vertex set ${\mathbb Z}_s$ and edge set {{i, i + 1, i + 2}: i ∈ ${\mathbb Z}_s$}. We prove that for every s ≢ 0 (mod 3) with s ⩾ 16 or s ∈ {8, 11, 14} there is a cs > 0 such that the 3-uniform hypergraph Ramsey number r(Cs3, Kn3) satisfies
$$\begin{equation*}r(C_s^3, K_n^3)< 2^{c_s n \log n}.\\end{equation*}$$
This answers in a strong form a question of the author and Rödl, who asked for an upper bound of the form $2^{n^{1+\epsilon_s}}$ for each fixed s ⩾ 4, where εs → 0 as s → ∞ and n is sufficiently large. The result is nearly tight as the lower bound is known to be exponential in n.
Let G1 × G2 denote the strong product of graphs G1 and G2, that is, the graph on V(G1) × V(G2) in which (u1, u2) and (v1, v2) are adjacent if for each i = 1, 2 we have ui = vi or uivi ∈ E(Gi). The Shannon capacity of G is c(G) = limn → ∞ α(Gn)1/n, where Gn denotes the n-fold strong power of G, and α(H) denotes the independence number of a graph H. The normalized Shannon capacity of G is
$$C(G) = \ffrac {\log c(G)}{\log |V(G)|}.$$
Alon [1] asked whether for every ε < 0 there are graphs G and G′ satisfying C(G), C(G′) < ε but with C(G + G′) > 1 − ε. We show that the answer is no.
The point-line collinearity graph ${\mathcal{G}}$ of the maximal 2-local geometry for the largest simple Fischer group, $Fi_{24}^{\prime }$, is extensively analysed. For an arbitrary vertex $a$ of ${\mathcal{G}}$, the $i\text{th}$-disc of $a$ is described in detail. As a consequence, it follows that ${\mathcal{G}}$ has diameter $5$. The collapsed adjacency matrix of ${\mathcal{G}}$ is given as well as accompanying computer files which contain a wealth of data about ${\mathcal{G}}$.
A graph is called arc-regular if its full automorphism group acts regularly on its arc set. In this paper, we completely determine all the arc-regular Frobenius metacirculants of prime valency.
We introduce a new model of competition on growing networks. This extends the preferential attachment model, with the key property that node choices evolve simultaneously with the network. When a new node joins the network, it chooses neighbours by preferential attachment, and selects its type based on the number of initial neighbours of each type. The model is analysed in detail, and in particular, we determine the possible proportions of the various types in the limit of large networks. An important qualitative feature we find is that, in contrast to many current theoretical models, often several competitors will coexist. This matches empirical observations in many real-world networks.
Recent inapproximability results of Sly (2010), together with an approximation algorithm presented by Weitz (2006), establish a beautiful picture of the computational complexity of approximating the partition function of the hard-core model. Let λc($\mathbb{T}_{\Delta}$) denote the critical activity for the hard-model on the infinite Δ-regular tree. Weitz presented an FPTAS for the partition function when λ < λc($\mathbb{T}_{\Delta}$) for graphs with constant maximum degree Δ. In contrast, Sly showed that for all Δ ⩾ 3, there exists εΔ > 0 such that (unless RP = NP) there is no FPRAS for approximating the partition function on graphs of maximum degree Δ for activities λ satisfying λc($\mathbb{T}_{\Delta}$) < λ < λc($\mathbb{T}_{\Delta}$) + εΔ.
We prove that a similar phenomenon holds for the antiferromagnetic Ising model. Sinclair, Srivastava and Thurley (2014) extended Weitz's approach to the antiferromagnetic Ising model, yielding an FPTAS for the partition function for all graphs of constant maximum degree Δ when the parameters of the model lie in the uniqueness region of the infinite Δ-regular tree. We prove the complementary result for the antiferromagnetic Ising model without external field, namely, that unless RP = NP, for all Δ ⩾ 3, there is no FPRAS for approximating the partition function on graphs of maximum degree Δ when the inverse temperature lies in the non-uniqueness region of the infinite tree $\mathbb{T}_{\Delta}$. Our proof works by relating certain second moment calculations for random Δ-regular bipartite graphs to the tree recursions used to establish the critical points on the infinite tree.
We extend spectral graph theory from the integral circulant graphs with prime power order to a Cayley graph over a finite chain ring and determine the spectrum and energy of such graphs. Moreover, we apply the results to obtain the energy of some gcd-graphs on a quotient ring of a unique factorisation domain.
Zhou and Feng [‘On symmetric graphs of valency five’, Discrete Math.310 (2010), 1725–1732] proved that all connected pentavalent 1-transitive Cayley graphs of finite nonabelian simple groups are normal. We construct an example of a nonnormal 2-arc transitive pentavalent symmetric Cayley graph on the alternating group $\text{A}_{39}$. Furthermore, we show that the full automorphism group of this graph is isomorphic to the alternating group $\text{A}_{40}$.
An orthogonal coloring of the two-dimensional unit sphere $\mathbb{S}^{2}$, is a partition of $\mathbb{S}^{2}$ into parts such that no part contains a pair of orthogonal points: that is, a pair of points at spherical distance ${\it\pi}/2$ apart. It is a well-known result that an orthogonal coloring of $\mathbb{S}^{2}$ requires at least four parts, and orthogonal colorings with exactly four parts can easily be constructed from a regular octahedron centered at the origin. An intriguing question is whether or not every orthogonal 4-coloring of $\mathbb{S}^{2}$ is such an octahedral coloring. In this paper, we address this question and show that if every color class has a non-empty interior, then the coloring is octahedral. Some related results are also given.
We prove that among all flag triangulations of manifolds of odd dimension $2r-1$, with a sufficient number of vertices, the unique maximizer of the entries of the $f$-, $h$-, $g$- and $\unicode[STIX]{x1D6FE}$-vector is the balanced join of $r$ cycles. Our proof uses methods from extremal graph theory.
A k-uniform hypergraph H = (V, E) is called ℓ-orientable if there is an assignment of each edge e ∈ E to one of its vertices v ∈ e such that no vertex is assigned more than ℓ edges. Let Hn,m,k be a hypergraph, drawn uniformly at random from the set of all k-uniform hypergraphs with n vertices and m edges. In this paper we establish the threshold for the ℓ-orientability of Hn,m,k for all k ⩾ 3 and ℓ ⩾ 2, that is, we determine a critical quantity c*k,ℓ such that with probability 1 − o(1) the graph Hn,cn,k has an ℓ-orientation if c < c*k,ℓ, but fails to do so if c > c*k,ℓ.
Our result has various applications, including sharp load thresholds for cuckoo hashing, load balancing with guaranteed maximum load, and massive parallel access to hard disk arrays.
For positive integers n and q and a monotone graph property $\mathcal{A}$, we consider the two-player, perfect information game WC(n, q, $\mathcal{A}$), which is defined as follows. The game proceeds in rounds. In each round, the first player, called Waiter, offers the second player, called Client, q + 1 edges of the complete graph Kn which have not been offered previously. Client then chooses one of these edges which he keeps and the remaining q edges go back to Waiter. If, at the end of the game, the graph which consists of the edges chosen by Client satisfies the property $\mathcal{A}$, then Waiter is declared the winner; otherwise Client wins the game. In this paper we study such games (also known as Picker–Chooser games) for a variety of natural graph-theoretic parameters, such as the size of a largest component or the length of a longest cycle. In particular, we describe a phase transition type phenomenon which occurs when the parameter q is close to n and is reminiscent of phase transition phenomena in random graphs. Namely, we prove that if q ⩾ (1 + ϵ)n, then Client can avoid components of order cϵ−2 ln n for some absolute constant c > 0, whereas for q ⩽ (1 − ϵ)n, Waiter can force a giant, linearly sized component in Client's graph. In the second part of the paper, we prove that Waiter can force Client's graph to be pancyclic for every q ⩽ cn, where c > 0 is an appropriate constant. Note that this behaviour is in stark contrast to the threshold for pancyclicity and Hamiltonicity of random graphs.
How many strict local maxima can a real quadratic function on {0, 1}n have? Holzman conjectured a maximum of $\binom{n }{ \lfloor n/2 \rfloor}$. The aim of this paper is to prove this conjecture. Our approach is via a generalization of Sperner's theorem that may be of independent interest.
Answering a question raised by Dudek and Prałat, we show that if pn → ∞, w.h.p., whenever G = G(n, p) is 2-edge-coloured there is a monochromatic path of length (2/3 + o(1))n. This result is optimal in the sense that 2/3 cannot be replaced by a larger constant.
As part of the proof we obtain the following result. Given a graph G on n vertices with at least $(1-\varepsilon)\binom{n}{2}$ edges, whenever G is 2-edge-coloured, there is a monochromatic path of length at least $(2/3 - 110\sqrt{\varepsilon})n$. This is an extension of the classical result by Gerencsér and Gyárfás which says that whenever Kn is 2-coloured there is a monochromatic path of length at least 2n/3.
We consider a threshold epidemic model on a clustered random graph model obtained from local transformations in an alternating branching process that approximates a bipartite graph. In other words, our epidemic model is such that an individual becomes infected as soon as the proportion of his/her infected neighbors exceeds the threshold q of the epidemic. In our random graph model, each individual can belong to several communities. The distributions for the community sizes and the number of communities an individual belongs to are arbitrary. We consider the case where the epidemic starts from a single individual, and we prove a phase transition (when the parameter q of the model varies) for the appearance of a cascade, i.e. when the epidemic can be propagated to an infinite part of the population. More precisely, we show that our epidemic is entirely described by a multi-type (and alternating) branching process, and then we apply Sevastyanov's theorem about the phase transition of multi-type Galton-Watson branching processes. In addition, we compute the entries of the mean progeny matrix corresponding to the epidemic. The phase transition for the contagion is given in terms of the largest eigenvalue of this matrix.
We give an exponential tail approximation for the extinction time of a subcritical multitype branching process arising from the SIR epidemic model on a random graph with given degrees, where the type corresponds to the vertex degree. As a corollary we obtain a Gumbel limit law for the extinction time, when beginning with a large population. Our contribution is to allow countably many types (this corresponds to unbounded degrees in the random graph epidemic model, as the number of vertices tends to∞). We only require a second moment for the offspring-type distribution featuring in our model.
Motivated by a problem of characterising a family of Cayley graphs, we study a class of finite groups $G$ which behave similarly to elementary abelian $p$-groups with $p$ prime, that is, there exists a subgroup $N$ such that all elements of $G\setminus N$ are conjugate or inverse-conjugate under $\mathsf{Aut}(G)$. It is shown that such groups correspond to complete multipartite graphs which are normal edge-transitive Cayley graphs.