To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we investigate first passage percolation on an inhomogeneous random graph model introduced by Bollobás et al. (2007). Each vertex in the graph has a type from a type space, and edge probabilities are independent, but depend on the types of the end vertices. Each edge is given an independent exponential weight. We determine the distribution of the weight of the shortest path between uniformly chosen vertices in the giant component and show that the hopcount, i.e. the number of edges on this minimal-weight path, properly normalized, follows a central limit theorem. We handle the cases where the average number of neighbors λ̃n of a vertex tends to a finite λ̃ in full generality and consider λ̃ = ∞ under mild assumptions. This paper is a generalization of the paper of Bhamidi et al. (2011), where first passage percolation is explored on the Erdős-Rényi graphs.
We consider Euclidean first passage percolation on a large family of connected random geometric graphs in the d-dimensional Euclidean space encompassing various well-known models from stochastic geometry. In particular, we establish a strong linear growth property for shortest-path lengths on random geometric graphs which are generated by point processes. We consider the event that the growth of shortest-path lengths between two (end) points of the path does not admit a linear upper bound. Our linear growth property implies that the probability of this event tends to zero sub-exponentially fast if the direct (Euclidean) distance between the endpoints tends to infinity. Besides, for a wide class of stationary and isotropic random geometric graphs, our linear growth property implies a shape theorem for the Euclidean first passage model defined by such random geometric graphs. Finally, this shape theorem can be used to investigate a problem which is considered in structural analysis of fixed-access telecommunication networks, where we determine the limiting distribution of the length of the longest branch in the shortest-path tree extracted from a typical segment system if the intensity of network stations converges to 0.
Vertices arrive sequentially in space and are joined to existing vertices at random according to a preferential rule combining degree and spatial proximity. We investigate phase transitions in the resulting graph as the relative strengths of these two components of the attachment rule are varied.
Previous work of one of the authors showed that when the geometric component is weak, the limiting degree sequence mimics the standard Barabási-Albert preferential attachment model. We show that at the other extreme, in the case of a sufficiently strong geometric component, the limiting degree sequence mimics a purely geometric model, the on-line nearest-neighbour graph, for which we prove some extensions of known results. We also show the presence of an intermediate regime, with behaviour distinct from both the on-line nearest-neighbour graph and the Barabási-Albert model; in this regime, we obtain a stretched exponential upper bound on the degree sequence.
For two given graphs $G_{1}$ and $G_{2}$, the Ramsey number $R(G_{1},G_{2})$ is the smallest integer $N$ such that, for any graph $G$ of order $N$, either $G$ contains $G_{1}$ as a subgraph or the complement of $G$ contains $G_{2}$ as a subgraph. A fan $F_{l}$ is $l$ triangles sharing exactly one vertex. In this note, it is shown that $R(F_{n},F_{m})=4n+1$ for $n\geq \max \{m^{2}-m/2,11m/2-4\}$.
Lladó and Moragas [‘Cycle-magic graphs’, Discrete Math.307 (2007), 2925–2933] showed the cyclic-magic and cyclic-supermagic behaviour of several classes of connected graphs. They discussed cycle-magic labellings of subdivided wheels and friendship graphs, but there are no further results on cycle-magic labellings of other families of subdivided graphs. In this paper, we find cycle-magic labellings for subdivided graphs. We show that if a graph has a cycle-(super)magic labelling, then its uniform subdivided graph also has a cycle-(super)magic labelling. We also discuss some cycle-supermagic labellings for nonuniform subdivided fans and triangular ladders.
The total irregularity of a simple undirected graph $G$ is defined as $\text{irr}_{t}(G)=\frac{1}{2}\sum _{u,v\in V(G)}|d_{G}(u)-d_{G}(v)|$, where $d_{G}(u)$ denotes the degree of a vertex $u\in V(G)$. Obviously, $\text{irr}_{t}(G)=0$ if and only if $G$ is regular. Here, we characterise the nonregular graphs with minimal total irregularity and thereby resolve the recent conjecture by Zhu et al. [‘The minimal total irregularity of graphs’, Preprint, 2014, arXiv:1404.0931v1 ] about the lower bound on the minimal total irregularity of nonregular connected graphs. We show that the conjectured lower bound of $2n-4$ is attained only if nonregular connected graphs of even order are considered, while the sharp lower bound of $n-1$ is attained by graphs of odd order. We also characterise the nonregular graphs with the second and the third smallest total irregularity.
This paper addresses the following question for a given graph H: What is the minimum number f(H) such that every graph with average degree at least f(H) contains H as a minor? Due to connections with Hadwiger's conjecture, this question has been studied in depth when H is a complete graph. Kostochka and Thomason independently proved that $f(K_t)=ct\sqrt{\ln t}$. More generally, Myers and Thomason determined f(H) when H has a super-linear number of edges. We focus on the case when H has a linear number of edges. Our main result, which complements the result of Myers and Thomason, states that if H has t vertices and average degree d at least some absolute constant, then $f(H)\leq 3.895\sqrt{\ln d}\,t$. Furthermore, motivated by the case when H has small average degree, we prove that if H has t vertices and q edges, then f(H) ⩽ t + 6.291q (where the coefficient of 1 in the t term is best possible).
Let h > w > 0 be two fixed integers. Let H be a random hypergraph whose hyperedges are all of cardinality h. To w-orient a hyperedge, we assign exactly w of its vertices positive signs with respect to the hyperedge, and the rest negative signs. A (w,k)-orientation of H consists of a w-orientation of all hyperedges of H, such that each vertex receives at most k positive signs from its incident hyperedges. When k is large enough, we determine the threshold of the existence of a (w,k)-orientation of a random hypergraph. The (w,k)-orientation of hypergraphs is strongly related to a general version of the off-line load balancing problem. The graph case, when h = 2 and w = 1, was solved recently by Cain, Sanders and Wormald and independently by Fernholz and Ramachandran. This settled a conjecture of Karp and Saks.
Let $\mathcal{F}$ be a family of r-uniform hypergraphs. The chromatic threshold of $\mathcal{F}$ is the infimum of all non-negative reals c such that the subfamily of $\mathcal{F}$ comprising hypergraphs H with minimum degree at least $c \binom{| V(H) |}{r-1}$ has bounded chromatic number. This parameter has a long history for graphs (r = 2), and in this paper we begin its systematic study for hypergraphs.
Łuczak and Thomassé recently proved that the chromatic threshold of the so-called near bipartite graphs is zero, and our main contribution is to generalize this result to r-uniform hypergraphs. For this class of hypergraphs, we also show that the exact Turán number is achieved uniquely by the complete (r + 1)-partite hypergraph with nearly equal part sizes. This is one of very few infinite families of non-degenerate hypergraphs whose Turán number is determined exactly. In an attempt to generalize Thomassen's result that the chromatic threshold of triangle-free graphs is 1/3, we prove bounds for the chromatic threshold of the family of 3-uniform hypergraphs not containing {abc, abd, cde}, the so-called generalized triangle.
In order to prove upper bounds we introduce the concept of fibre bundles, which can be thought of as a hypergraph analogue of directed graphs. This leads to the notion of fibre bundle dimension, a structural property of fibre bundles that is based on the idea of Vapnik–Chervonenkis dimension in hypergraphs. Our lower bounds follow from explicit constructions, many of which use a hypergraph analogue of the Kneser graph. Using methods from extremal set theory, we prove that these Kneser hypergraphs have unbounded chromatic number. This generalizes a result of Szemerédi for graphs and might be of independent interest. Many open problems remain.
‘Small worlds’ are large systems in which any given node has only a few connections to other points, but possessing the property that all pairs of points are connected by a short path, typically logarithmic in the number of nodes. The use of random walks for sampling a uniform element from a large state space is by now a classical technique; to prove that such a technique works for a given network, a bound on the mixing time is required. However, little detailed information is known about the behaviour of random walks on small-world networks, though many predictions can be found in the physics literature. The principal contribution of this paper is to show that for a famous small-world random graph model known as the Newman-Watts small-world model, the mixing time is of order log2n. This confirms a prediction of Richard Durrett [5, page 22], who proved a lower bound of order log2n and an upper bound of order log3n.
Given a connected regular graph $G$, let $l(G)$ be its line graph, $s(G)$ its subdivision graph, $r(G)$ the graph obtained from $G$ by adding a new vertex corresponding to each edge of $G$ and joining each new vertex to the end vertices of the corresponding edge and $q(G)$ the graph obtained from $G$ by inserting a new vertex into every edge of $G$ and new edges joining the pairs of new vertices which lie on adjacent edges of $G$. A formula for the normalised Laplacian characteristic polynomial of $l(G)$ (respectively $s(G),r(G)$ and $q(G)$) in terms of the normalised Laplacian characteristic polynomial of $G$ and the number of vertices and edges of $G$ is developed and used to give a sharp lower bound for the degree-Kirchhoff index and a formula for the number of spanning trees of $l(G)$ (respectively $s(G),r(G)$ and $q(G)$).
Nešetřil and Ossona de Mendez introduced the notion of first-order convergence, which unifies the notions of convergence for sparse and dense graphs. They asked whether, if (Gi)i∈ℕ is a sequence of graphs with M being their first-order limit and v is a vertex of M, then there exists a sequence (vi)i∈ℕ of vertices such that the graphs Gi rooted at vi converge to M rooted at v. We show that this holds for almost all vertices v of M, and we give an example showing that the statement need not hold for all vertices.
Two players take it in turn to claim edges from a graph $G$. The first player (“Maker”) wins if at any point he has claimed $s$ edges at a vertex without the second player (“Breaker”) having claimed a single edge at that vertex. If, by the end of play, this does not occur we say that Breaker wins. Our main aim is to show that for every $s$ there is a graph $G$ in which Maker has a winning strategy.
A graph on n vertices is ε-far from a property $\mathcal{P}$ if one has to add or delete from it at least εn2 edges to get a graph satisfying $\mathcal{P}$. A graph property $\mathcal{P}$ is strongly testable if for every fixed ε > 0 it is possible to distinguish, with one-sided error, between graphs satisfying $\mathcal{P}$ and ones that are ε-far from $\mathcal{P}$ by inspecting the induced subgraph on a random subset of at most f(ε) vertices. A property is easily testable if it is strongly testable and the function f is polynomial in 1/ε, otherwise it is hard. We consider the problem of characterizing the easily testable graph properties, which is wide open, and obtain several results in its study. One of our main results shows that testing perfectness is hard. The proof shows that testing perfectness is at least as hard as testing triangle-freeness, which is hard. On the other hand, we show that being a cograph, or equivalently, induced P3-freeness where P3 is a path with 3 edges, is easily testable. This settles one of the two exceptional graphs, the other being C4 (and its complement), left open in the characterization by the first author and Shapira of graphs H for which induced H-freeness is easily testable. Our techniques yield a few additional related results, but the problem of characterizing all easily testable graph properties, or even that of formulating a plausible conjectured characterization, remains open.
Estimating numerically the spectral radius of a random walk on a non-amenable graph is complicated, since the cardinality of balls grows exponentially fast with the radius. We propose an algorithm to get a bound from below for this spectral radius in Cayley graphs with finitely many cone types (including for instance hyperbolic groups). In the genus 2 surface group, it improves by an order of magnitude the previous best bound, due to Bartholdi.
We consider a variant of the game of Cops and Robbers, called Lazy Cops and Robbers, where at most one cop can move in any round. We investigate the analogue of the cop number for this game, which we call the lazy cop number. Lazy Cops and Robbers was recently introduced by Offner and Ojakian, who provided asymptotic upper and lower bounds on the lazy cop number of the hypercube. By coupling the probabilistic method with a potential function argument, we improve on the existing lower bounds for the lazy cop number of hypercubes.
We study the expected value of the length Ln of the minimum spanning tree of the complete graph Kn when each edge e is given an independent uniform [0, 1] edge weight. We sharpen the result of Frieze [6] that limn→∞$\mathbb{E}$(Ln) = ζ(3) and show that
Let $p(k)$ denote the partition function of $k$. For each $k\geqslant 2$, we describe a list of $p(k)-1$ quasirandom properties that a $k$-uniform hypergraph can have. Our work connects previous notions on linear hypergraph quasirandomness by Kohayakawa, Rödl, and Skokan, and by Conlon, Hàn, Person, and Schacht, and the spectral approach of Friedman and Wigderson. For each of the quasirandom properties that is described, we define the largest and the second largest eigenvalues. We show that a hypergraph satisfies these quasirandom properties if and only if it has a large spectral gap. This answers a question of Conlon, Hàn, Person, and Schacht. Our work can be viewed as a partial extension to hypergraphs of the seminal spectral results of Chung, Graham, and Wilson for graphs.
Over 50 years ago, Erdős and Gallai conjectured that the edges of every graph on n vertices can be decomposed into O(n) cycles and edges. Among other results, Conlon, Fox and Sudakov recently proved that this holds for the random graph G(n, p) with probability approaching 1 as n → ∞. In this paper we show that for most edge probabilities G(n, p) can be decomposed into a union of n/4 + np/2 + o(n) cycles and edges w.h.p. This result is asymptotically tight.
We define a pseudometric on the set of all unbounded subsets of a metric space. The Kolmogorov quotient of this pseudometric space is a complete metric space. The definition of the pseudometric is guided by the principle that two unbounded subsets have distance 0 whenever they stay sublinearly close. Based on this pseudometric we introduce and study a general concept of boundaries of metric spaces. Such a boundary is the closure of a subset in the Kolmogorov quotient determined by an arbitrarily chosen family of unbounded subsets. Our interest lies in those boundaries which we get by choosing unbounded cyclic sub(semi)groups of a finitely generated group (or more general of a compactly generated, locally compact Hausdorff group). We show that these boundaries are quasi-isometric invariants and determine them in the case of nilpotent groups as a disjoint union of certain spheres (or projective spaces). In addition we apply this concept to vertex-transitive graphs with polynomial growth and to random walks on nilpotent groups.