To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}R$ be a commutative ring, $I(R)$ be the set of all ideals of $R$ and $S$ be a subset of $I^*(R)=I(R)\setminus \{0\}$. We define a Cayley sum digraph of ideals of $R$, denoted by $\overrightarrow{\mathrm{Cay}}^+ (I(R),S)$, as a directed graph whose vertex set is the set $I(R)$ and, for every two distinct vertices $I$ and $J$, there is an arc from $I$ to $J$, denoted by $I\longrightarrow J$, whenever $I+K=J$, for some ideal $K $ in $S$. Also, the Cayley sum graph $ \mathrm{Cay}^+ (I(R), S)$ is an undirected graph whose vertex set is the set $I(R)$ and two distinct vertices $I$ and $J$ are adjacent whenever $I+K=J$ or $J+K=I$, for some ideal $K $ in $ S$. In this paper, we study some basic properties of the graphs $\overrightarrow{\mathrm{Cay}}^+ (I(R),S)$ and $ \mathrm{Cay}^+ (I(R), S)$ such as connectivity, girth and clique number. Moreover, we investigate the planarity, outerplanarity and ring graph of $ \mathrm{Cay}^+ (I(R), S)$ and also we provide some characterization for rings $R$ whose Cayley sum graphs have genus one.
A graph $\Gamma $ is $G$-symmetric if $\Gamma $ admits $G$ as a group of automorphisms acting transitively on the set of vertices and the set of arcs of $\Gamma $, where an arc is an ordered pair of adjacent vertices. In the case when $G$ is imprimitive on $V(\Gamma )$, namely when $V(\Gamma )$ admits a nontrivial $G$-invariant partition ${\mathcal{B}}$, the quotient graph $\Gamma _{\mathcal{B}}$ of $\Gamma $ with respect to ${\mathcal{B}}$ is always $G$-symmetric and sometimes even $(G, 2)$-arc transitive. (A $G$-symmetric graph is $(G, 2)$-arc transitive if $G$ is transitive on the set of oriented paths of length two.) In this paper we obtain necessary conditions for $\Gamma _{{\mathcal{B}}}$ to be $(G, 2)$-arc transitive (regardless of whether $\Gamma $ is $(G, 2)$-arc transitive) in the case when $v-k$ is an odd prime $p$, where $v$ is the block size of ${\mathcal{B}}$ and $k$ is the number of vertices in a block having neighbours in a fixed adjacent block. These conditions are given in terms of $v, k$ and two other parameters with respect to $(\Gamma , {\mathcal{B}})$ together with a certain 2-point transitive block design induced by $(\Gamma , {\mathcal{B}})$. We prove further that if $p=3$ or $5$ then these necessary conditions are essentially sufficient for $\Gamma _{{\mathcal{B}}}$ to be $(G, 2)$-arc transitive.
In this work we consider the mean-field traveling salesman problem, where the intercity distances are taken to be independent and identically distributed with some distribution F. We consider the simplest approximation algorithm, namely, the nearest-neighbor algorithm, where the rule is to move to the nearest nonvisited city. We show that the limiting behavior of the total length of the nearest-neighbor tour depends on the scaling properties of the density of F at 0 and derive the limits for all possible cases of general F.
A colouring of the vertices of a regular polygon is symmetric if it is invariant under some reflection of the polygon. We count the number of symmetric $r$-colourings of the vertices of a regular $n$-gon.
We study an urn model introduced in the paper of Chen and Wei (2005), where at each discrete time step m balls are drawn at random from the urn containing colors white and black. Balls are added to the urn according to the inspected colors, generalizing the well known Pólya-Eggenberger urn model, case m = 1. We provide exact expressions for the expectation and the variance of the number of white balls after n draws, and determine the structure of higher moments. Moreover, we discuss extensions to more than two colors. Furthermore, we introduce and discuss a new urn model where the sampling of the m balls is carried out in a step-by-step fashion, and also introduce a generalized Friedman's urn model.
We consider a stochastic SIR (susceptible → infective → removed) epidemic on a random graph with specified degree distribution, constructed using the configuration model, and investigate the ‘acquaintance vaccination’ method for targeting individuals of high degree for vaccination. Branching process approximations are developed which yield a post-vaccination threshold parameter, and the asymptotic (large population) probability and final size of a major outbreak. We find that introducing an imperfect vaccine response into the present model for acquaintance vaccination leads to sibling dependence in the approximating branching processes, which may then require infinite type spaces for their analysis and are generally not amenable to numerical calculation. Thus, we propose and analyse an alternative model for acquaintance vaccination, which avoids these difficulties. The theory is illustrated by a brief numerical study, which suggests that the two models for acquaintance vaccination yield quantitatively very similar disease properties.
Let $X$ be a curve over a number field $K$ with genus $g\geq 2$, $\mathfrak{p}$ a prime of ${ \mathcal{O} }_{K} $ over an unramified rational prime $p\gt 2r$, $J$ the Jacobian of $X$, $r= \mathrm{rank} \hspace{0.167em} J(K)$, and $\mathscr{X}$ a regular proper model of $X$ at $\mathfrak{p}$. Suppose $r\lt g$. We prove that $\# X(K)\leq \# \mathscr{X}({ \mathbb{F} }_{\mathfrak{p}} )+ 2r$, extending the refined version of the Chabauty–Coleman bound to the case of bad reduction. The new technical insight is to isolate variants of the classical rank of a divisor on a curve which are better suited for singular curves and which satisfy Clifford’s theorem.
The long-standing open problem of finding an upper bound for the Wiener index of a graph in terms of its order and diameter is addressed. Sharp upper bounds are presented for the Wiener index, and the related degree distance and Gutman index, for trees of order $n$ and diameter at most $6$.
For a family of linear preferential attachment graphs, we provide rates of convergence for the total variation distance between the degree of a randomly chosen vertex and an appropriate power law distribution as the number of vertices tends to ∞. Our proof uses a new formulation of Stein's method for the negative binomial distribution, which stems from a distributional transformation that has the negative binomial distributions as the only fixed points.
We study the array of point-to-point distances in random regular graphs equipped with exponential edge lengths. We consider the regime where the degree is kept fixed while the number of vertices tends to ∞. The marginal distribution of an individual entry is now well understood, thanks to the work of Bhamidi, van der Hofstad and Hooghiemstra (2010). The purpose of this note is to show that the whole array, suitably recentered, converges in the weak sense to an explicit infinite random array. Our proof consists in analyzing the invasion of the network by several mutually exclusive flows emanating from different sources and propagating simultaneously along the edges.
We consider a large class of exponential random graph models and prove the existence of a region of parameter space corresponding to the emergent multipartite structure, separated by a phase transition from a region of disordered graphs. An essential feature is the formalism of graph limits as developed by Lovász et al. for dense random graphs.
In this paper we characterise the distributions of the number of predecessors and of the number of successors of a given set of vertices, A, in the random mapping model, TnD̂ (see Hansen and Jaworski (2008)), with exchangeable in-degree sequence (D̂1,D̂2,…,D̂n). We show that the exact formulae for these distributions and their expected values can be given in terms of the distributions of simple functions of the in-degree variables D̂1,D̂2,…,D̂n. As an application of these results, we consider two special examples of TnD̂ which correspond to random mappings with preferential and anti-preferential attachment, and determine the exact distributions for the number of predecessors and the number of successors in these cases. We also characterise, for these two special examples, the asymptotic behaviour of the expected numbers of predecessors and successors and interpret these results in terms of the threshold behaviour of epidemic processes on random mapping graphs. The families of discrete distributions obtained in this paper are also of independent interest.
This paper is based on works presented at the 2012 Applied Probability Trust Lecture in Sheffield; its main purpose is to survey the recent asymptotic results of Bertoin (2012a) and Bertoin and Uribe Bravo (2012b) about Bernoulli bond percolation on certain large random trees with logarithmic height. We also provide a general criterion for the existence of giant percolation clusters in large trees, which answers a question raised by David Croydon.
An $r$-ary necklace (bracelet) of length $n$ is an equivalence class of $r$-colourings of vertices of a regular $n$-gon, taking all rotations (rotations and reflections) as equivalent. A necklace (bracelet) is symmetric if a corresponding colouring is invariant under some reflection. We show that the number of symmetric $r$-ary necklaces (bracelets) of length $n$ is $\frac{1}{2} (r+ 1){r}^{n/ 2} $ if $n$ is even, and ${r}^{(n+ 1)/ 2} $ if $n$ is odd.
Let $G$ be a finite group acting vertex-transitively on a graph. We show that bounding the order of a vertex stabiliser is equivalent to bounding the second singular value of a particular bipartite graph. This yields an alternative formulation of the Weiss conjecture.
We give a simple graph-theoretic proof of a classical result due to Nash-Williams on covering graphs by forests. Moreover, we derive a slight generalization of this statement where some edges are preassigned to distinct forests.
Let $p$ be a real number greater than one and let $\Gamma $ be a graph of bounded degree. We investigate links between the $p$-harmonic boundary of $\Gamma $ and the ${D}_{p} $-massive subsets of $\Gamma $. In particular, if there are $n$ pairwise disjoint ${D}_{p} $-massive subsets of $\Gamma $, then the $p$-harmonic boundary of $\Gamma $ consists of at least $n$ elements. We show that the converse of this statement is also true.
In this paper, we determine when $\mathop{({\Gamma }_{I} (L))}\nolimits ^{c} $, the complement of the zero divisor graph ${\Gamma }_{I} (L)$ with respect to a semiprime ideal $I$ of a lattice $L$, is connected and also determine its diameter, radius, centre and girth. Further, a form of Beck’s conjecture is proved for ${\Gamma }_{I} (L)$ when $\omega (\mathop{({\Gamma }_{I} (L))}\nolimits ^{c} )\lt \infty $.
We consider the bipartite matching model of customers and servers introduced by Caldentey, Kaplan and Weiss (2009). Customers and servers play symmetrical roles. There are finite sets C and S of customer and server classes, respectively. Time is discrete and at each time step one customer and one server arrive in the system according to a joint probability measure μ on C× S, independently of the past. Also, at each time step, pairs of matched customers and servers, if they exist, depart from the system. Authorized matchings are given by a fixed bipartite graph (C, S, E⊂ C × S). A matching policy is chosen, which decides how to match when there are several possibilities. Customers/servers that cannot be matched are stored in a buffer. The evolution of the model can be described by a discrete-time Markov chain. We study its stability under various admissible matching policies, including ML (match the longest), MS (match the shortest), FIFO (match the oldest), RANDOM (match uniformly), and PRIORITY. There exist natural necessary conditions for stability (independent of the matching policy) defining the maximal possible stability region. For some bipartite graphs, we prove that the stability region is indeed maximal for any admissible matching policy. For the ML policy, we prove that the stability region is maximal for any bipartite graph. For the MS and PRIORITY policies, we exhibit a bipartite graph with a non-maximal stability region.