To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\mathcal F$ ⊂ 2[n] be a family of subsets. The diameter of $\mathcal F$ is the maximum of the size of symmetric differences among pairs of members of $\mathcal F$. In 1966 Kleitman determined the maximum of |$\mathcal F$| for fixed diameter. However, this important classical result lacked a characterization of the families meeting the bound. This is remedied in the present paper, where a best possible stability result is established as well.
In Section 4 we introduce a ‘parity trick’ that provides an easy way of deducing the odd case from the even case in both Kleitman's original theorem and its stability version.
In Ramsey theory one wishes to know how large a collection of objects can be while avoiding a particular substructure. A problem of recent interest has been to study how large subsets of the natural numbers can be while avoiding three-term geometric progressions. Building on recent progress on this problem, we consider the analogous problem over quadratic number fields. We first construct high-density subsets of the algebraic integers of an imaginary quadratic number field that avoid three-term geometric progressions. When unique factorization fails, or over a real quadratic number field, we instead look at subsets of ideals of the ring of integers. Our approach here is to construct sets ‘greedily’, a generalization of the greedy set of rational integers considered by Rankin. We then describe the densities of these sets in terms of values of the Dedekind zeta function. Next, we consider geometric-progression-free sets with large upper density. We generalize an argument by Riddell to obtain upper bounds for the upper density of geometric-progression-free subsets, and construct sets avoiding geometric progressions with high upper density to obtain lower bounds for the supremum of the upper density of all such subsets. Both arguments depend critically on the elements with small norm in the ring of integers.
Let [n]r be the complete r-partite hypergraph with vertex classes of size n. It is an easy exercise to show that every set of more than (k−1)nr−1 edges in [n]r contains a matching of size k. We conjecture the following rainbow version of this observation: if F1,F2,. . .,Fk ⊆ [n]r are of size larger than (k−1)nr−1 then there exists a rainbow matching, that is, a choice of disjoint edges fi ∈ Fi. We prove this conjecture for r=2 and r=3.
Let ℱ be a family of graphs and let d be large enough. For every d-regular graph G, we study the existence of a spanning ℱ-free subgraph of G with large minimum degree. This problem is well understood if ℱ does not contain bipartite graphs. Here we provide asymptotically tight results for many families of bipartite graphs such as cycles or complete bipartite graphs. To prove these results, we study a locally injective analogue of the question.
We introduce the open degree of a compact space, and we show that for every natural number $n$, the separable Rosenthal compact spaces of degree $n$ have a finite basis.
We say a graph is (Qn,Qm)-saturated if it is a maximal Qm-free subgraph of the n-dimensional hypercube Qn. A graph is said to be (Qn,Qm)-semi-saturated if it is a subgraph of Qn and adding any edge forms a new copy of Qm. The minimum number of edges a (Qn,Qm)-saturated graph (respectively (Qn,Qm)-semi-saturated graph) can have is denoted by sat(Qn,Qm) (respectively s-sat(Qn,Qm)). We prove that
for fixed m, disproving a conjecture of Santolupo that, when m=2, this limit is 1/4. Further, we show by a different method that sat(Qn, Q2)=O(2n), and that s-sat(Qn, Qm)=O(2n), for fixed m. We also prove the lower bound
For a given graph G of minimum degree at least k, let Gp denote the random spanning subgraph of G obtained by retaining each edge independently with probability p = p(k). We prove that if p ⩾ (logk + loglogk + ωk(1))/k, where ωk(1) is any function tending to infinity with k, then Gp asymptotically almost surely contains a cycle of length at least k + 1. When we take G to be the complete graph on k + 1 vertices, our theorem coincides with the classic result on the threshold probability for the existence of a Hamilton cycle in the binomial random graph.
We prove that triangular configurations are plentiful in large subsets of Cartesian squares of finite quasirandom groups from classes having the quasirandom ultraproduct property, for example the class of finite simple groups. This is deduced from a strong double recurrence theorem for two commuting measure-preserving actions of a minimally almost periodic (not necessarily amenable or locally compact) group on a (not necessarily separable) probability space.
Let Dk denote the tournament on 3k vertices consisting of three disjoint vertex classes V1, V2 and V3 of size k, each oriented as a transitive subtournament, and with edges directed from V1 to V2, from V2 to V3 and from V3 to V1. Fox and Sudakov proved that given a natural number k and ε > 0, there is n0(k, ε) such that every tournament of order n ⩾ n0(k,ε) which is ε-far from being transitive contains Dk as a subtournament. Their proof showed that $n_0(k,\epsilon ) \leq \epsilon ^{-O(k/\epsilon ^2)}$ and they conjectured that this could be reduced to n0(k, ε) ⩽ ε−O(k). Here we prove this conjecture.
A long-standing conjecture of Richter and Thomassen states that the total number of intersection points between any n simple closed Jordan curves in the plane, so that any pair of them intersect and no three curves pass through the same point, is at least (1−o(1))n2.
We confirm the above conjecture in several important cases, including the case (1) when all curves are convex, and (2) when the family of curves can be partitioned into two equal classes such that each curve from the first class touches every curve from the second class. (Two closed or open curves are said to be touching if they have precisely one point in common and at this point the two curves do not properly cross.)
An important ingredient of our proofs is the following statement. Let S be a family of n open curves in ℝ2, so that each curve is the graph of a continuous real function defined on ℝ, and no three of them pass through the same point. If there are nt pairs of touching curves in S, then the number of crossing points is $\Omega(nt\sqrt{\log t/\log\log t})$.
Let Qd denote the hypercube of dimension d. Given d ⩾ m, a spanning subgraph G of Qd is said to be (Qd, Qm)-saturated if it does not contain Qm as a subgraph but adding any edge of E(Qd)\E(G) creates a copy of Qm in G. Answering a question of Johnson and Pinto [27], we show that for every fixed m ⩾ 2 the minimum number of edges in a (Qd, Qm)-saturated graph is Θ(2d).
We also study weak saturation, which is a form of bootstrap percolation. A spanning subgraph of Qd is said to be weakly (Qd, Qm)-saturated if the edges of E(Qd)\E(G) can be added to G one at a time so that each added edge creates a new copy of Qm. Answering another question of Johnson and Pinto [27], we determine the minimum number of edges in a weakly (Qd, Qm)-saturated graph for all d ⩾ m ⩾ 1. More generally, we determine the minimum number of edges in a subgraph of the d-dimensional grid Pkd which is weakly saturated with respect to ‘axis aligned’ copies of a smaller grid Prm. We also study weak saturation of cycles in the grid.
The 3-uniform tight cycle Cs3 has vertex set ${\mathbb Z}_s$ and edge set {{i, i + 1, i + 2}: i ∈ ${\mathbb Z}_s$}. We prove that for every s ≢ 0 (mod 3) with s ⩾ 16 or s ∈ {8, 11, 14} there is a cs > 0 such that the 3-uniform hypergraph Ramsey number r(Cs3, Kn3) satisfies
$$\begin{equation*}r(C_s^3, K_n^3)< 2^{c_s n \log n}.\\end{equation*}$$
This answers in a strong form a question of the author and Rödl, who asked for an upper bound of the form $2^{n^{1+\epsilon_s}}$ for each fixed s ⩾ 4, where εs → 0 as s → ∞ and n is sufficiently large. The result is nearly tight as the lower bound is known to be exponential in n.
Working in the infinite plane R2, consider a Poisson process of black points with intensity 1, and an independent Poisson process of red points with intensity λ. We grow a disc around each black point until it hits the nearest red point, resulting in a random configuration Aλ, which is the union of discs centered at the black points. Next, consider a fixed disc of area n in the plane. What is the probability pλ(n) that this disc is covered by Aλ? We prove that if λ3nlogn = y then, for sufficiently large n, e-8π2y ≤ pλ(n) ≤ e-2π2y/3. The proofs reveal a new and surprising phenomenon, namely, that the obstructions to coverage occur on a wide range of scales.
A uniform hypergraph H is called k-Ramsey for a hypergraph F if, no matter how one colours the edges of H with k colours, there is always a monochromatic copy of F. We say that H is k-Ramsey-minimal for F if H is k-Ramsey for F but every proper subhypergraph of H is not. Burr, Erdős and Lovasz studied various parameters of Ramsey-minimal graphs. In this paper we initiate the study of minimum degrees and codegrees of Ramsey-minimal 3-uniform hypergraphs. We show that the smallest minimum vertex degree over all k-Ramsey-minimal 3-uniform hypergraphs for Kt(3) is exponential in some polynomial in k and t. We also study the smallest possible minimum codegree over 2-Ramsey-minimal 3-uniform hypergraphs.
Answering a question raised by Dudek and Prałat, we show that if pn → ∞, w.h.p., whenever G = G(n, p) is 2-edge-coloured there is a monochromatic path of length (2/3 + o(1))n. This result is optimal in the sense that 2/3 cannot be replaced by a larger constant.
As part of the proof we obtain the following result. Given a graph G on n vertices with at least $(1-\varepsilon)\binom{n}{2}$ edges, whenever G is 2-edge-coloured, there is a monochromatic path of length at least $(2/3 - 110\sqrt{\varepsilon})n$. This is an extension of the classical result by Gerencsér and Gyárfás which says that whenever Kn is 2-coloured there is a monochromatic path of length at least 2n/3.
For each of the notions of hypergraph quasirandomness that have been studied, we identify a large class of hypergraphs F so that every quasirandom hypergraph H admits a perfect F-packing. An informal statement of a special case of our general result for 3-uniform hypergraphs is as follows. Fix an integer r ⩾ 4 and 0 < p < 1. Suppose that H is an n-vertex triple system with r|n and the following two properties:
• for every graph G with V(G) = V(H), at least p proportion of the triangles in G are also edges of H,
• for every vertex x of H, the link graph of x is a quasirandom graph with density at least p.
Then H has a perfect Kr(3)-packing. Moreover, we show that neither of the hypotheses above can be weakened, so in this sense our result is tight. A similar conclusion for this special case can be proved by Keevash's Hypergraph Blow-up Lemma, with a slightly stronger hypothesis on H.
For natural numbers $n,r\in \mathbb{N}$ with $n\geqslant r$, the Kneser graph $K(n,r)$ is the graph on the family of $r$-element subsets of $\{1,\ldots ,n\}$ in which two sets are adjacent if and only if they are disjoint. Delete the edges of $K(n,r)$ with some probability, independently of each other: is the independence number of this random graph equal to the independence number of the Kneser graph itself? We shall answer this question affirmatively as long as $r/n$ is bounded away from $1/2$, even when the probability of retaining an edge of the Kneser graph is quite small. This gives us a random analogue of the Erdős–Ko–Rado theorem, since an independent set in the Kneser graph is the same as a uniform intersecting family. To prove our main result, we give some new estimates for the number of disjoint pairs in a family in terms of its distance from an intersecting family; these might be of independent interest.
A set A of positive integers is a Bh-set if all the sums of the form a1 + . . . + ah, with a1,. . .,ah ∈ A and a1 ⩽ . . . ⩽ ah, are distinct. We provide asymptotic bounds for the number of Bh-sets of a given cardinality contained in the interval [n] = {1,. . .,n}. As a consequence of our results, we address a problem of Cameron and Erdős (1990) in the context of Bh-sets. We also use these results to estimate the maximum size of a Bh-sets contained in a typical (random) subset of [n] with a given cardinality.